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However, even assuming that E is first countable and complete, one

can in general no longer conclude that/* is bounded (i.e., that f*(A) is

bounded for every bounded subset A of E) whenever it is finite-valued.

Counter-examples are easily given in the case of the familiar spaces

E F (N) with p e (0, 1).

Part 2: Applications to Multipliers

§ 5. (p, q)-multipliers which are not measures

5.1 Introduction. In this section and the following one we will use

the substance of § 3 to prove several apparently new properties of (p, q)-

multipliers. Let G be a locally compact group [all topological groups will
be assumed to be Hausdorff and, in this section, will be multiplicatively
written with identity e]. Denote by LP(G), where 1 S P S °o? the usual
Lebesgue space formed with a fixed left Haar measure XG on G; and by
Cc(G) the space of continuous complex-valued functions on G with
compact supports.

For öeG, define the left translation operator za and the right translation
operator pa by

^ag(x) gia'1 x) and

j respectively. A linear operator T from Cc(G) into Lq(G) is said to be a
I (left) (p, q)-multiplier if and only if

(i) T is continuous from Cc(G), equipped with the norm induced by
f LP(G), into L\G); and

j (ii) T commutes with left translations, that is Tza %aT for all a eG.
i

i A right (jp, q)-multiplier is defined in a similar manner with (ii) replaced
by

j (ii') Tpa paT for all a eG.

j Let Lqp(G) denote the Banach space of (p, ^-multipliers equipped with the
j customary norm, denoted by || • ||M, of continuous linear operators from

a subspace of LP{G) into Lq{G). That is, for each TeLqp(G), || T\\Ptq is
the smallest real number K satisfying
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for all g e Cc(G). [When p ^ oo it is more usual to define L^(G) as the

space of unique continuous extensions to LP(G) of the (p, ^-multipliers.]
As an example, whenever k e Cc(G), the operator Tk, defined by

Tk :g |-> g * k

for all geCc(G), is (a) a (p, ^-multiplier for all (p, q) satisfying
1 ^ P S q S °o; and (b) a (p, ^-multiplier for all p, qe [1, oo] provided
G is compact. [When G is noncompact it is known that Lqp {0} whenever

p > q—see [1], § 3.4.3. We also remark that, unless a more explicit
reference is given, all the properties of the convolution operator between

functions and functions and between functions and measures used in the

sequel may be found in [2], §4.19.] For convenience, we will sometimes

write || k || p q
in place of || Tk \ \Ptq. Use will be made of the fact that

|| * ||i,s || Tk ||i,s =11 k ||5,

II* Ik* llnlkco WA~1IS'k\U

where A denotes the modular function of G, as defined in [7], (15.11) and

(15.15) and s' is defined by l/s+l/s' — 1; cf. [1], Corollary 2.6.2 (i) and

Theorem 1.4.

5.2 Definitions. If TeLqp(G), we say that:

(i) supp T Ç W, where IF is a closed subset of G, if and only if
supp Tg ç (supp g). W for every g e Cc(G).

(ii) T is a measure ji if and only if Tg — g * p for every g g Cc(G).

[When k g Cc(G), supp Tk ç IF if and only if supp k ç IF; and in any
case Tk is the measure ft kXG.\

5.3 Adjoint multipliers. Let T g Lqp(G) and define an adjoint T' of T
by

g * T' h (e) Tg * h (e) (5.2)

for all g, h g Cc{G). Since Tg * h(e) \GTg hdXG, where h{x) h(x _ x),

it is readily shown that T commutes with right translations and that it
may be extended to an operator from (.Lq')w into (Lp)v. We also infer
from (5.2) that

g * T' h Tg * h (5.3)
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everywhere on G, since ia{Tg * h) ta(7g) * h J1 (rag) * h. It is plain

from (5.3) that T is a measure p if and only if T' is of the form h |-> p * /*.

If we also assume that G is unimodular, so that the U norms of g and g

are identical, two applications of the converse to Holder's inequality will
show that

llr'lL,, \\T\La9 (5.4)
14 >P

where l/p'+l/p 1; thus T is a right (^%/^O-mnltiplier. Moreover

(cf. [1], Corollary 2.6.2 (ii))

^||llS ||fc|k.= 11*11«- (5-5)

5.4 Rudin-Shapiro sequences. If G is a nonvoid open subset of G,

by a U-supported Rudin-Shapiro sequence (briefly: a U-RS-sequence) on G

we shall mean a sequence (hn)neN of elements of Cc(G) with the following
properties :

supp hn ç U,

inf || hn ||2 > 0, sup || A„ !|oo < oo,

|| h„ ||2j2 0.

(5.6)

We do not know conditions on G which are necessary and sufficient for
there to exist G-RS-sequences on G for a given U. When G is nondiscrete

Abelian, G-RS-sequences may be constructed on G in a fairly explicit
manner for every non-void open subset G of G (see Appendix A.2 below).
Sufficient conditions applying in the non-Abelian case are given in Appendix

A.3.

If (hn) is a G-RS-sequence, we may construct positive integers
< m2 < so that

|| h 1(2,2 ^ n~1

Let kn nhm It then follows from (5.6) that
n

||*„||i^Ai, (5.7)

II K ||s ^ A1,sn (1 co), (5.8)

II K 1(2,2 g 2~", (5.9)

where A and B are positive and independent of n.

L'Enseienement mathém.. t. XVI. fasc. 3-4. t s
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5.5 When G is infinite compact Abelian, Theorem 4.15 of [1] shows that
there exists an operator belonging to Lqp(G) for every p e (1, oo] and every
qe [1, oo) and which is not a measure. [Given an infinite Sidon subset

of r, operators with this property are immediately constructible whether
G is Abelian or not; cf. [7], (37.22).] When G is noncompact locally
compact Abelian or infinite compact, it has recently been shown that there
exists an operator belonging to Lpp(G) for every p e (1, oo) which is not a

bounded measure. [See [4] and [9]; the proof contained in [9] is

constructive to some extent. See also [17].] We aim to show in 5.7 below that,
if U is a relatively compact open subset of G, and if we are able to construct
a G-RS-sequence on G, then we can construct an operator T e f) {Lqp(G) :

1 < p -^q ^ oo} such that supp T ç U and T is not a measure. (If G is

also unimodular, an analogous result holds for right (p, ^-multipliers.)
The inequality p > 1, along with the inequality q < oo if G is

unimodular, is essential for the existence of such a T since every member of
L?(G) is of the form g |-> g * fi, where fi is a bounded measure if q 1

or pe Lq(G) if 1 < q ^ oo (see [1], Corollary 2.6.2), and since Lq(G) L^(G)
if G is unimodular (see (5.4) above). When G is non-compact, the inequality

p tk q is also essential since in this case Lqp{G) {0} whenever p > q (see [1],
§ 3.4.3). Concerning non-unimodular groups, see 5.8 below.

5.6 Lemma. Let k be a continuous function supported by a

relatively compact open subset U of G, and let c c(U) > 0 denote

inf{d(x)_1 :xeG}, where A is the modular function for G. Then
functions u, v e Cc(G) with 11 w * v [ |

œ ^ 1 may be constructed so that

\u*Tkv(e)\^2) y k l^.

Proof. Let {<5a} be an approximate identity on G comprised of non-
negative functions with compact supports and which each satisfy

v V V
jG ôadXG 1. Since k * da tends to k in L (G), we may select v ôa

so that

II (V*£)v ||t «= || k*V111 ^ ^ II fc||i. (5.10)

Define a compactly supported function g on G by g(x) v * k(x)/
I v * k{x) I if v * k(x) 0, and g(x) 0 otherwise. Let wa <5a * g
Then wa e Cc(G) and, since ua (v * £)v tends to g (v * &)v in Ll(G), we

may select a so that
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I JG Ma(v * kYdXGI> I J g (v * fc)v ^G|. (5.11)

Putting uua,wethen have from (5.10) and (5.11)

I u*Tkv(e)II jc (v * k)wdXG|

^||V*£)v||i ^ ||£||i

à (c/2) || k Hj.

Moreover, ||w*v||00 ||v*w||00 ^II vINI« II» ^ i'as required.

5.7 Theorem. (1) Let (hn) be a £/-RS-sequence on a locally compact

group G, where U is a relatively compact open subset of G, and let (kn)neN

be defined as in 5.4. A continuum of sequences (œn) e ll(N) may be

constructed for which the series

lneN0)nTkn (5.12)

converges normally in Lqp{G) for every pair (p, q) satisfying 1 < p fg q < oo

to a unique operator, T say, such that

(1) supp T c U, and

(ii) T is not a measure.

(2) With the further condition that G is unimodular, the theorem
remains valid if we replace throughout left multipliers and their related

concepts by right multipliers and their correspondingly related concepts.

Proof. (1) For each ne N, Lemma 5.6 shows that we may select
and fix u„, vne Cc(G) such that

|| "„ * h, |U ^ 1 I K* \(e) I ^ (c/2) || Hi, (5.13)

where c inf {d(x)"1 : x e U) > 0 does not depend on n.
We aim to apply 3.2, taking:

H the space of linear maps from Cc(G) into L}0C{G), the topology on
H being that of pointwise convergence;
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I { (p,i) 1 < p û q < 00} ;

jE(p,4) Lqp(G) with its standard norm;

E S\

fn-.T\^\un*Tvn{e)[,

x„ Tk.
n

It is clear that 3.2 (i) holds and that fn is continuous (a fortiori bounded) on E.

By way of verification of 3.2 (ii)-(iv) we will show that

/* (Tk < 00 for every ne N, (5.14)
n

lim«-,«, Tkn0 in (5.15)

lim^œ/„(rt) CO. (5.16)
n

Regarding (5.14), we have

fm(Tk) I Um*Tknvm(e)I I um*vm*kn(e) | g || * || w|| || t

which, by the first clause of (5.13), does not exceed ||&„||i. .Hence

/* (Tk ^ || A: ||i, which is finite since kn e Cc(G).

As to (5.15), the Kiesz-Thorin convexity theorem ([11], Volume II, p. 95)
1 1

shows that for (/?, q) e I satisfying —|— ^ 1 one has
P q

WWUg II \||2j2 || || 17, (5.17)

where 1 /p a/2 + (1 —a)/l, l/q a/2 + (l—ofy/s, so that a 2jp' e (0, 1]

and se[l, oo]. On combining the first clause of (5.1), (5.8), (5.9) and

(5.17), we see that

linw || 7;J|Pi9 0 (5.18)

for every pair (p, q) e I satisfying l/p -f l/q ^ 1. If, on the other hand,
(/?, q) el and l/p + \\q < 1, a similar argument gives

II \||p.«^ \\W\^WTk\\^ (5-19>

where l/p a/2 + (1—a)/s and \jq a/2, so that a 2/q e (0, 1) and

se (I, oo]. On combining the second clause of (5.1), (5.8), (5.9) and the

fact that A is bounded away from zero on U, (5.18) appears once more.
The verification of (5.15) is thus complete.
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The definition of fn combines with (5.7) and (5.13) to yield (5.16).

Appeal to 3.2 provides a construction for a continuum of sequences

(con)ell(N) for each of which the series (5.12) converges normally in E

to a sum T satisfying

/* (T) oo. (5.20)

This entails that, for every (/?, q) e /, TeLqp(G) and the series (5.12) is

normally convergent in Lqp(G) to the sum T. Since supp ^ — U for

every n, it is simple to verify that sup T U. It remains to show that T
is not a measure. However, were T to be the measure p, it would be the

case that supp p ç Ü and so, using the first clause of (5.7), that

f„(T) I M„ * T\'n(e) I I u„ * * [1(e) |

I [g("»* ~ V/i I

Since p has a compact support, this inequality would lead to a contradiction
of (5.20). Thus T cannot be a measure.

(2) Finally, when G is unimodular, everything remains valid when right
multipliers replace left multipliers throughout: this can be seen by either

repeating the entire argument ab initio, or by deriving it from the result
already obtained by making use of the properties of the adjoint discussed

in 5.3.

5.8 The non-unimodular case, (i) If G is non-unimodular, there can
be no full analogue of Theorem 5.7 applying to right multipliers. This is

so because in this case there exist no non-trivial right (p, ^-multipliers
when p ^ q.

To see this, suppose that T is a right (p, ^-multiplier and that p ^ q.
For f e Cc(G) and ae G we then have

II Pa Tf\\q II TPaf\\q g II r||p>, II pj\\p II r||p>, A(ay»

and

\\PaTf\\q= A(ay<«\\Tf\\q.
Hence

II Tf\\irkA(a)1/p~1/q||T ||p>? ||/||p.
Since G is non-unimodular and p ^ q,



iirfßeG A(a)llp~1/q 0,

and we infer that 7=0.
(ii) In spite of (i) immediately above, there is a partial analogue taking

the following form.
Assume that there exists a sequence (hn) satisfying (5.6), where now

|| K 112,2 is defined to mean

sup { II K*/||2:/eCc(G),||/||2 ^ 1}.

Then modification of the proof of Theorem 5.7 will lead to the construction
of operators 7 which are right multipliers of type (p, p) for every p e (1, oo),
have supports contained in U, and are not of the form f\-> p */for any
measure p.

§ 6. (p, q)-multipliers whose transforms are not measures

6.1 Introduction. Throughout this section we suppose that G is a

locally compact Abelian LCA) group with dual group 7, both groups
being additively written. We begin by slightly modifying the form of the
definition of (p, ^-multipliers, so rendering it possible to make certain
statements about their Fourier transforms without attempting a general
definition of such transforms. To this end, let 7 denote the set of functions

on G which belong to fl {LP(G) : 1 ^ p ^ oo} and which possess Fourier
transforms with compact supports, and denote by Lqp(G) the set of continuous

linear operators from 7, equipped with the Lp(G)-norm, into Lq(G)
which commute with translations. As before, equip Lqp(G) with the

(LP(G), Lq(G)) operator norm. It is easy to specify a natural isometry
between Lqp(G) as defined above and Lqp(G) as defined in § 5, and so we

speak of the elements of Lqp(G) as (p, ^-multipliers on G.

When 7 is a (p, ^-multiplier in this sense, we say that its Fourier
a

transform T is a measure p if and only if there exists a measure p on 7
such that

h*Tg(0) — lr hgdp(6.1)

for all g, h e 7, where u denotes the Fourier transform of u. Similarly,
A

if Q is an open subset of 7, we shall write 7 p on Q if and only if (6.1)

holds for all g, he F such that supp g ^ Q. If 1 is a closed subset of 7,
A A

we shall write supp 7 Ç I if and only if 7 0 on 7/7.



— 273 —

It is simple to verify that, if Ke F and TK is the mapping

g\-*g*K=K*g, then TKeLqp whenever 1 ^ ^ ^ oo. (In fact,

|K*g||co g II^IIp'IUIIp and |K*g||p â ll^lji II g ||p and the con-

vexity of the function t |-> log II K* g M t-1? or an appeal to the closed
A A

graph theorem, does the rest.) Furthermore, TK is the measure KXr,
where Xr is the Haar measure of F normalised so that the L2(/lr)-norm of
u is equal to || w ||2 for every u eL2(G).

6.2 It has been shown by Gaudry ([5], Theorem 3.1) that, if G is non-

compact LCA and 1 ^p<2<q^co, there exist operators T e Lqp(G)
A

such that T is not a measure. In 6.3 and its proof we shall indicate how to
construct operators T which belong to Lqp(G) for every pair (p, q) satisfying

A

l^p<2<g^co and which are such that supp T is contained in a
A

compact subset of F and T is not a measure. The precise statement of
6.3 requires some prefatory remarks.

Let G be a noncompact LCA group and Q a relatively compact open
subset of the dual group F. Since F is nondiscrete LCA, an C-RS-

sequence (hn) on F may be constructed in such a way that the inverse
Fourier transform of hn belongs to LX(G) for every n\ see Appendix A.2.
Assuming this to have been done, choose positive integers m1 < m2 <
and define kn nhm^ exactly as in 5.4, so that (5.7)-(5.9) remain intact

(but with F, rather than G, as the underlying group). We now consider
the functions Kn on G, Kn being defined to be the inverse Fourier transform
of k„.

It is plain that every Kn belongs to F. Moreover, an application of
Holder's inequality yields

II*»11. ^ ||*B||^i|jqiir2/i (s>2). (6.2)

By Parseval's formula and (5.8),

IK ||2 |K ||2 ^
also, since G is LCA, (5.9) leads to

IKIUHKJk,
Inserting these last two estimates into (6.2), we obtain

|| Kn ||s 0 (n2/s 2). (6.3)
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We shall need to note also that a construction, similar to that appearing
in the proof of Lemma 5.6, shows that for each ne N we may select and
fix w„, vne F such that

|| "» II«, g 1 (6.4)

and

I Jr un Vnkn dXrIè i||Kn||!i || II, à \Bn, (6.5)

the last link in this chain of inequalities stemming from (5.7).

6.3 Theorem. Let G be a noncompact LCA group, Q a relatively
compact open subset of the dual group jT. Suppose the function Kn(n e N)
to be defined as in 6.2. A continuum of sequences (con) e li(N) may be

constructed, for each of which the series

YneN œn ?Kn (6-6)

converges normally in Lqp(G) for every pair (/?, q) satisfying 1 p < 2 < q

^ oo, the sum T of the series (6.6) satisfying the conditions

(i) Te f| { Lqv{G) : 1 <2<q^*>};
A

(ii) supp T £ Q ; and

A
(iii) T is not a measure.

Proof. Since G is Abelian, (5.4) shows that Lqp(G) Lpq,(G) and

II ' I\p,q " II ' IAccordingly, we may and will restrict attention to
those pairs (p, q) such that 1 ^p<2<q^co and l/p + l/q ^ 1;

denote by I the set of such pairs.
We propose to appeal to Corollary 3.2, taking therein

H the space of linear maps from F into L/0C(G) with the topology of
pointwise convergence;

/ as defined immediately above;

E(Piq) Lqp(G) for every (p,q)eI;E the closed linear subspace of S generated by the TK (ne N);
n

fn'-T\-*\un* Tv„(0) I ;

x" - Tk„-
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Regarding the hypotheses of Corollary 3.2, it is clear that 3.2 (i) is

satisfied. Also, for any TeE and any me N, Holder's inequality yields

fm(T)g|| um||,.|| Tvmy,J£ || um II,. || r||p„ || vm ||p>

which, since um and vm belong to F, shows that fm is continuous (and therefore

certainly bounded) on E.
A

Next, since (see the remarks at the end of 6.1 above) TK is the measure
ft

KnXr — knXr>

fm(TK) I Jr Um Vmkn dXr | ^ || K ||l>

the inequality coming from (6.4). This makes it clear that f*(TK is
Ä n

finite for every ne N, so that 3.2 (ii) is satisfied.

Turning to 3.2 (iii), note first that by convexity (as in the proof of
(5.17)) we have

II ^„IU ^ II rKJ"2>2 ll^Ji- (6.7)

where, since p < 2 < q, we have a < 1 and s > 2. Now, by the case

s — co of (5.8),

11 T'Kfi 11 2,2 11 Kn I! eo — 11 kn 11
00 n>

Using this in combination with (6.3) and (6.7), it appears that

where ß (1—a) (l—2/s) is positive, and so

lim„_rXl Tk
n

which is more than enough to verify 3.2 (iii).
As for 3.2 (iv), the fact that TK^ K„Xr combines with (6.5) to yield

In(Tk— I Jr unvnK„d/.r | ^ \Bn,

which confirms 3.2 (iv).
An appeal to Corollary 3.2 is thus justified and assures one of the

existence of a continuum of sequences (co„) e l\(N) for each of which the
series (6.6) converges normally to a (unique) sum in which satisfies

f* (T)oo. (6.8)

From this it is evident that (i) is satisfied, and that, for every pair (p, q)
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satisfying 1 ^p<2<q^co, the series (6.6) converges normally in
Lqp{G) to T. Next, T is the limit in E of

as r -» oo and, since it is plain that supp Sr ç Q for every r, (ii) is easily
A

derived. Finally, if T were a measure jn, it would necessarily be the case

that supp ji c q and so, for every ne TV, one would have by (6.1) and (6.4)

fn (T) I U„*Tv„(0)[ I v„ du I

Ü M (ßh

which is finite since 0 is relatively compact. However, this plainly would

entail/* (F) < oo, in conflict with (6.8), so that T cannot be a measure and

(iii) is verified. This completes the proof.

6.4 Remark. Theorem 6.3 was proved by Hörmander ([14], Theorem

1.9) for G Rn and any given pair (/?, q) satisfying 1 < 2 < q ^ oo,

this result being extended to a general noncompact LCA G by Gaudry [5].

The argument given by Hörmander (loc. cit. Theorem 1.6 and the remark

immediately following) for the case G =* Rn can also be extended to a

general LCA G and shows that, if either q ^ 2 or p ^ 2, then every
A

T e Lqp{G) is such that Lisa measure [and indeed a measure of the form
ij/Àr, where \jj e Lfoc (T) if q ^ 2 and ij) e Lfoc (T) if p ^ 2, and so

\j/ e Lfoc (T) in either case ]. Thus the hypotheses made in Theorem 6.3

about p and q are necessary for the validity of the conclusion.

Part 3: Applications to Fourier series

§ 7. Applications to divergence of Fourier series.

7.1 Throughout §§7-10, G will denote an infinite Hausdorff compact
Abelian group with character group T, and XG the Haar measure on G,

A
normalised so that Xg(G) 1. For any/e L^G), / will denote the Fourier
transform of /; for any finite subset A of F,

sAf I/(y)y (7.1)
yeA

is the d-partial sum of the Fourier series of /; and sp (/) will stand for
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