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However, even assuming that E is first countable and complete, one
can in general no longer conclude that f* is bounded (i.e., that f*(4) is
bounded for every bounded subset 4 of E) whenever it is finite-valued.
Counter-examples are easily given in the case of the familiar spaces
E =[P (N) with pe (0, 1).

PART 2: APPLICATIONS TO MULTIPLIERS

§ 5. (p, q)-multipliers which are not measures

5.1 INTRODUCTION. In this section and the following one we will use
the substance of § 3 to prove several apparently new properties of (p, g)-
multipliers. Let G be a locally compact group [all topological groups will
be assumed to be Hausdorff and, in this section, will be multiplicatively
written with identity e¢]. Denote by L?(G), where 1 < p £ o0, the usual
Lebesgue space formed with a fixed left Haar measure 15 on G; and by
C/G) the space of continuous complex-valued functions on G with
compact supports.

For a € G, define the left translation operator 7, and the right translation
operator p, by

1,8(x) =g(@ 'x) and p,g(x) =g (xa™);

respectively. A linear operator 7 from C.(G) into LYG) is said to be a
(left) (p, q)-multiplier if and only if

(i) T is continuous from C.(G), equipped with the norm induced by
L7(G), into LYG); and

(i) T commutes with left translations, that is Tt, = 1,T for all a € G.

A right (p, @)-multiplier is defined in a similar manner with (ii) replaced
by

) Tp, = p, T forall ae G.

Let L;(G) denote the Banach space of (p, g)-multipliers equipped with the
customary norm, denoted by || - ||,.,, of continuous linear operators from
a subspace of L?(G) into LYG). That is, for each Te LYG), || T||,., is
the smallest real number K satisfying

[Tl = K|l ],
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for all ge C(G). [When p # oo it is more usual to define LXG) as the
space of unique continuous extensions to LP(G) of the (p, g)-multipliers.]
As an example, whenever k € C(G), the operator T, defined by

T,:glog*k

for all ge C.G), is (a) a (p,g)-multiplier for all (p,q) satisfying
1 <p =g =< w;and (b) a (p, g)-multiplier for all p, g € [1, 0] provided
G is compact. [When G is noncompact it is known that L% = {0} when-
ever p > g—see [1], § 3.4.3. We also remark that, unless a more explicit
reference is given, all the properties of the convolution operator between
functions and functions and between functions and measures used in the
sequel may be found in [2], §4.19.] For convenience, we will sometimes

write || k ||, , in place of || Ty ||,.,» Use will be made of the fact that

s = 1Tl = 1%
1l = Tl = 477

o

(5.1)

where A denotes the modular function of G, as defined in [7], (15.11) and
(15.15) and s’ is defined by 1/s-+1/s" = 1; cf. [1], Corollary 2.6.2 (i) and
Theorem 1.4.

5.2 DerINITIONS.  If T'€ LI(G), we say that:

(W) supp T < W, where W is a closed subset of G, if and only if
supp Tg < (supp g) . W for every g € C(G).

(i) T is a measure u if and only if Tg = g * u for every g € C(G).

[When k € C(G), supp T, < W if and only if supp £k = W; and in any
case T is the measure p = kig.]

5.3 ApjoiNT MULTIPLIERS. Let T e Li(G) and define an adjoint 77 of T
by
g*xT h(e) =Tg * h(e) (5.2)

for all g, he C(G). Sinde Tg * h(e) = [ Tg . hdig, where h(x) = h(x~ 1),
it is readily shown that 7' commutes with right translations and that it
may be extended to an operator from (L?)™ into (LF)Y. We also infer
from (5.2) that '
g*T"h=Tgx*h (5.3)
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everywhere on G, since 1,(Tg * h) = t,(7g) * h = T (t,g) * h. It is plain
from (5.3) that T is a measure y if and only if 7" is of the form A |- pu * h.

If we also assume that G is unimodular, so that the L? norms of g and g
are identical, two applications of the converse to Holder’s inequality will
show that

|7

oo = | Tl p.a (5.4)

where 1/p'+1/p = 1; thus T’ is a right (¢, p)-multiplier. Moreover
(cf. [1], Corollary 2.6.2 (ii))

Tl =1l = [Tl (5.5

5.4 RUDIN-SHAPIRO SEQUENCES. If U is a nonvoid open subset of G,
by a U-supported Rudin-Shapiro sequence (briefly: a U-RS-sequence) on G
we shall mean a sequence (,),.y Of elements of C.(G) with the following
properties: ‘

supp h, € U,
inf || A, ||, > 0, sup || 2, ||, < o,

\'s

(5.6)

lim, -, || Ay ||2.2 = O. |

We do not know conditions on G which are necessary and sufficient for
there to exist U-RS-sequences on G for a given U. When G is nondiscrete
Abelian, U-RS-sequences may be constructed on G in a fairly explicit
manner for every non-void open subset U of G (see Appendix A.2 below).
Sufficient conditions applying in the non-Abelian case are given in Appen-
dix A.3.

If (h,) is a U-RS-sequence, we may construct positive integers
my < my < ... so that

H hmn HZ,Z < n t27m,

Let k, = nhmn. It then follows from (5.6) that

I olle = Bn, 6)
| kalls = 4 (1 £ 5 = ), (5.8)
| a2, <277, (5.9)

where 4 and B are positive and independent of n.

L’Enseignement mathém.. t. XVI. fasc. 3-4. 1R
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5.5 When G is infinite compact Abelian, Theorem 4.15 of [1] shows that
there exists an operator belonging to L!(G) for every p € (1, o] and every
q €[1, ) and which is not a measure. [Given an infinite Sidon subset
of I', operators with this property are immediately constructible whether
G is Abelian or not; cf. [7], (37.22).] When G is noncompact locally
compact Abelian or infinite compact, it has recently been shown that there
exists an operator belonging to L)(G) for every p € (1, co) which is not a
bounded measure. [See [4] and [9]; the proof contained in [9] is con-
structive to some extent. See also [17].] We aim to show in 5.7 below that,
if U is a relatively compact open subset of G, and if we are able to construct
a U-RS-sequence on G, then we can construct an operator T € ) {L%(G):
1 < p<q =<0} such that supp 7"< U and T is not a measure. (If G is
also unimodular, an analogous result holds for right (p, ¢)-multipliers.)

The inequality p > 1, along with the inequality ¢ < oo if G is uni-
modular, is essential for the existence of such a T since every member of
L{(G) is of the form g |— g * u, where u is a bounded measure if g = 1
or pe LYG)if 1< g = oo (see [1], Corollary 2.6.2), and since L{(G) = L7(G)
if G 1s unimodular (see (5.4) above). When G is non-compact, the inequality
p = gis also essential sincein this case L}(G) = {0} whenever p > ¢ (see [1],
§ 3.4.3). Concerning non-unimodular groups, see 5.8 below.

5.6 LeMMA. Let k£ be a continuous function supported by a
relatively compact open subset U of G, and let ¢ = ¢(U) > 0 denote
inf {4(x)"' : xe U}, where 4 is the modular function for G. Then
functions u, ve C,(G) with ||u* v||, <1 may be constructed so that

Iu*Tkv(e)l 2(0/2)Hk||1.

Proor. Let {0,} be an approximate identity on G comprised of non-
negative functions with compact supports and which each satisfy
g 9.dA¢ = 1. Since k =5, tends to k in L'(G), we may select v = J,
so that

v oy 3. v
oY [[o = [l &=V [[e = 2| &[] (5.10)

Define a compactly supported function g on G by g(x) — v k(x)/
| v * k(x)| if v*k(x) # 0, and g(x) =0 otherwise. Letu,=d,* g .
Then u, € C(G) and, since u, (v * k)™ tends to g (v * k) in L*(G), we
may select o« so that




— 269 —

3. PR
| Joulvx k) dig| = 2|12 0 %) digl (6D

Putting # = u,, we then have from (5.10) and (5.11)
Iu* TkV(e)l = HGu(V * k)vd/{G'

3
Zzlfcg(v*k)vdicl
3 I
= o= = ]l
= (¢/2) || k||
Moreover, |[u*v||, =V * #]|w < |V [|4]] % ||« <1, as required.

5.7 TaeoreM. (1) Let (h,) be a U-RS-sequence on a locally compact
group G, where U is a relatively compact open subset of G, and let (k,),en
be defined as in 5.4. A continuum of sequences (w,) €L (N) may be
constructed for which the series

2nen @n T (5.12)

converges normally in LI(G) for every pair (p, q) satisfying 1l <p <g< o
to a unique operator, T say, such that

(i) supp T < U, and
(i1) 7 is not a measure.

(2) With the further condition that G is unimodular, the theorem
remains valid if we replace throughout left multipliers and their related
concepts by right multipliers and their correspondingly related concepts.

Proor. (1) For each ne N, Lemma 5.6 shows that we may select
and fix u,, v, € C.(G) such that

[ vl = 1,

w Ty 1@ 2 @) ]| k|

y (5.13)

where ¢ = inf {4(x)™' : x e U} > 0 does not depend on n.
We aim to apply 3.2, taking:

H = the space of linear maps from C,(G) into L} (G), the topology on
H being that of pointwise convergence;
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I={(pqg:1<p=q<o};
E,.o = LYXG) with its standard norm;

E = £

Jo i Tl | u, = Tv(e) |;

X, = Tkn‘

It is clear that 3.2 (1) holds and that f; is continuous (a fortiori bounded) on E.
By way of verification of 3.2 (i1)-(iv) we will show that

f* (Tkn) < oo for every ne N, (5.14)
lim,,_,ooTkn = 01n E, (5.15)
lim,,_,oof,,(Tkn) = 0. (5.16)

Regarding (5.14), we have
fm(Tkn) — ‘ Uy, *Tkn Vm(e) I = I um* Vin ¥ kn(e) I é ” um* Vi lloo”l\én Hl

which, by the first clause of (5.13), does not exceed || k, |- Hence
f*(T) £ k ||1, which is finite since k, € C(G).
As to (5.15), the Riesz-Thorin convexity theorem ([11], Volume II, p. 95)

1 1
shows that for (p, q) € I satisfying - + -~ = 1 one has
P 4

1% (5.17)

175, |

n

P = H Tk,, H 3,2 II Tk,,

where 1/p = a/2 + (1—-a)/1, 1/g = a/2 4 (1 —a)/s, so that a = 2/p’ € (0, 1]
and se[l, o0o]. On combining the first clause of (5.1), (5.8), (5.9) and
(5.17), we see that

lim, . || Ty [p.g = O (5.18)

for every pair (p, q) € I satisfying 1/p 4+ 1/g = 1. 1f, on the other hand,
(p,q)el and 1/p + 1/g < 1, a similar argument gives

1 Te oa = 1 T, 11502 11 T, 1] 5.5 (5.19)

where 1/p = /2 + (1—a)/s and 1/q = «/2, so that « = 2/qe (0, 1) and
se (1, 00]. On combining the second clause of (5.1), (5.8), (5.9) and the
fact that A4 is bounded away from zero on U, (5.18) appears once more.
The verification of (5.15) is thus complete.
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The definition of f, combines with (5.7) and (5.13) to yield (5.16).

Appeal to 3.2 provides a construction for a continuum of sequences
(w,) € IL(N) for each of which the series (5.12) converges normally in E
to a sum 7 satisfying

f*T) = . (5.20)
This entails that, for every (p,q)el, TeL%(G) and the series (5.12) is
normally convergent in L!(G) to the sum 7. Since supp T, ke S U for

every n, it is simple to verify that sup T < U. It remains to show that 7
is not a measure. However, were T to be the measure y, it would be the
case that supp p < U and so, using the first clause of (5.7), that

SAT) = | uy = Tv(e) | = [uy * v, * ple) |
= | fg (, * v,)" 4™ 'du|
éjGA—ldlﬂl-

Since u has a compact support, this inequality would lead to a contradiction
of (5.20). Thus T cannot be a measure.

(2) Finally, when G is unimodular, everything remains valid when right
multipliers replace left multipliers throughout: this can be seen by either
repeating the entire argument ab initio, or by deriving it from the result
already obtained by making use of the properties of the adjoint discussed
in 5.3.

5.8 THE NON-UNIMODULAR CASE. (i) If G is non-unimodular, there can
be no full analogue of Theorem 5.7 applying to right multipliers. This is
so because in this case there exist no non-trivial right (p, g)-multipliers
when p # gq.

To see this, suppose that T is a right (p, g¢)-multiplier and that p # gq.
For fe C(G) and a € G we then have

[P Tflls = N Toaflle = (I Tllpall pas 1l = 1 T1],.0 4@ " [ 711,

and

| pa TS|l = d@"* || Tf]],
Hence

17S]le = 4@ [ T {0 | 711,

Since G is non-unimodular and p # ¢,
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inf, ¢ A(a)*/?~11 = 0,
and we infer that 7 = 0.

(i) In spite of (i) immediately above, there is a partial analogue taking
the following form.

Assume that there exists a sequence (h,) satisfying (5.6), where now
|| 2, ||2.2 is defined to mean

sup { || b, * f|2 : fe CLG), || f]]. £ 1}.

Then modification of the proof of Theorem 5.7 will lead to the construction
of operators 7" which are right multipliers of type (p, p) for every p € (1, ),
have supports contained in U, and are not of the form f|— u * f for any
measure f.

§ 6. (p, q)-multipliers whose transforms are not measures

6.1 INTRODUCTION. Throughout this section we suppose that G is a
locally compact Abelian (= LCA) group with dual group I', both groups
being additively written. We begin by slightly modifying the form of the
definition of (p, g)-multipliers, so rendering it possible to make certain
statements about their Fourier transforms without attempting a general
definition of such transforms. To this end, let F denote the set of functions
on G which belong to (1 {L?(G) : 1 < p < oo} and which possess Fourier
transforms with compact supports, and denote by LI(G) the set of contin-
uous linear operators from F, equipped with the LP(G)-norm, into L4(G)
which commute with translations. As before, equip LI(G) with the
(L*(G), LYG)) operator norm. It is easy to specify a natural isometry
between L%(G) as defined above and L7(G) as defined in § 5, and so we
speak of the elements of L1(G) as (p, g)-multipliers on G.

When T is a (p, g)-multiplier in this sense, we say that its Fourier

A
transform T is a measure p if and only if there exists a measure p on I’
such that

h#Tg (0) = fr hgdy 6.1)

for all g, h € F, where u denotes the Fourier transform of u. Similarly,

if Q is an open subset of I', we shall write 7= p on Q if and only if (6.1)
holds for all g, h € F such that supp§ c Q. If X is a closed subset of I',

we shall write supp T = 2 if and only if 7 = 0 on I'/2.
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1t is simple to verify that, if KeF and Ty is the mapping
g|>g*K=K=g, then TyeL? whenever 1 <p < ¢ < oo. (In fact,
K *gll <[ K], llg]l, and || K*g]], < [[K]: ]| £]], and the con-
vexity of the function 7 |- log||K*g]||.-1, or an appeal to the closed
graph theorem, does the rest.)) Furthermore, T « 1s the measure K/lr,
where 1, is the Haar measure of I' normalised so that the L*(4;)-norm of

u is equal to || u ||, for every u e LX(G).

6.2 It has been shown by Gaudry ([5], Theorem 3.1) that, if G is non-
compact LCA and 1 < p <2 < g £ oo, there exist operators 7 € LI(G)

such that ]A’ is not a measure. In 6.3 and its proof we shall indicate how to
construct operators 7' which belong to LI(G) for every palr (p, q) satisfying

1 <p<2<g £ o and which are such that supp T is contained In a

compact subset of I and a“is not a measure. The precise statement of
6.3 requires some prefatory remarks.

Let G be a noncompact LCA group and Q2 a relatively compact open
subset of the dual group I'. Since I' is nondiscrete LCA, an Q-RS-
sequence (4,) on I' may be constructed in such a way that the inverse
Fourier transform of A, belongs to L'(G) for every n; see Appendix A.2.
Assuming this to have been done, choose positive integers m; < m, < ...
and define k, = nhmn exactly as in 5.4, so that (5.7)-(5.9) remain intact

(but with I', rather than G, as the underlying group). We now consider
the functions K, on G, K, being defined to be the inverse Fourier transform
of k,.

It is plain that every K, belongs to F. Moreover, an application of
Holder’s inequality yields

1Kl < 1 I3 K2 > 2 62)

By Parseval’s formula and (5.8),

2 = Hkn HZ é A%n;

also, since G is LCA, (5.9) leads to

o H Tkn H2,2 é 270
Inserting these last two estimates into (6.2), we obtain

I

s mn(1=209y (5% 7). (6.3)
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We shall need to note also that a construction, similar to that appearing
in the proof of Lemma 5.6, shows that for each n € N we may select and
fix u,, v, € F such that

| 4w Vulle =1 (6.4)
and

| §rttn Vo Ky dig | 2 3| K, || = 4| &a ||1 = 3B, (6.5)

the last link in this chain of inequalities stemming from (5.7).

6.3 THEOREM. Let G be a noncompact LCA group, Q a relatively
compact open subset of the dual group I'.  Suppose the function K, (n € N)
to be defined as in 6.2. A continuum of sequences (w,) € /3(N) may be
constructed, for each of which the series

ZneN @, TK n (66)

converges normally in LY(G) for every pair (p, g) satisfying 1 S p <2<y
< o0, the sum T of the series (6.6) satisfying the conditions

D) TeN{LyG):1 2p<2<qg= w};
Gi) supp T < Q: and

A
(ii1) T is not a measure.

Proor. Since G is Abelian, (5.4) shows that L¥(G) = L?(G) and
Il “ 5. =l * ll&.p~ Accordingly, we may and will restrict attention to
those pairs (p,q) such that 1 < p<2<g <o and 1/p+ 1/g =1;
denote by I the set of such pairs.

We propose to appeal to Corollary 3.2, taking therein

H = the space of linear maps from F into L;,.(G) with the topology of
pointwise convergence;

I  as defined immediately above;
Ep.q) = Ly(G) for every‘(p, q)el;
E = the closed linear subspace of & generated by the TKn (ne N);

fo 1 T 1= |ty = Tv,0) |;

x,, - TKn.
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Regarding the hypotheses of Corollary 3.2, it is clear that 3.2 (1) is
satisfied. Also, for any T € E and any m € N, Holder’s inequality yields

Pl = tt g [ T Ml = 1]t o 1 T Ul 1] v (]

which, since u,, and v,, belong to F, shows that f,, is continuous (and there-
fore certainly bounded) on E.
Next, since (see the remarks at the end of 6.1 above) TKn is the measure

A

Knlr = knj.r,

1>

fm(TKn) = !jl‘z’?m /Gm kn dll‘[ § H knl

the inequality coming from (6.4). This makes it clear that f* (T Kn) 1S

finite for every n e N, so that 3.2 (ii) is satisfied.
Turning to 3.2 (iii), note first that by convexity (as in the proof of
(5.17)) we have '

1Tk, n.a = 1l T, 15,2 ] T, I 157 67)

where, since p < 2 < ¢, we have « < 1 and s > 2. Now, by the case
s = oo of (5.8),

| Tk, |22 = [[ K[l = [[ k]| £ .
Using this in combination with (6.3) and (6.7), it appears that

| T, |5, = 0 (nn> 705270,
where f = (1—0a) (1—2/s) is positive, and so
lim, , TKn = 0 in E,

which is more than enough to verify 3.2 (iii).
As for 3.2 (iv), the fact that T K = K,Ar combines with (6.5) to yield

A AN

fn (TKn) = le’ Uy VnKn dﬂ’l’l Z_ %Bna

which confirms 3.2 (iv).

An appeal to Corollary 3.2 is thus justified and assures one of the
existence of a continuum of sequences (w,) € /% (N) for each of which the
series (6.6) converges normally to a (unique) sum 7 in E which satisfies

S*(T) = oo. (6.8)
From this it is evident that (i) is satisfied, and that, for every pair (», 9
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satisfying' 1 < p <2 < g £ o0, the series (6.6) converges normally in
L%(G) to T. Next, T is the limit in E of

. F
Sr - Zn=1 a)n TKn

as r — oo and, since it is plain that supp S, = Q for every r, (ii) is easily

derived. Finally, if T were a measure u, it would necessarily be the case
that supp u = Q and so, for every n € N, one would have by (6.1) and (6.4)

So (@) = | % T9,(0) | = | [ty S i |
| 1] (Q),

which is finite since Q is relatively compact. However, this plainly would
entail f* (T) < oo, in conflict with (6.8), so that 7" cannot be a measure and
(1i1) is verified. This completes the proof.

IA

6.4 REMARK. Theorem 6.3 was proved by Hérmander ([14], Theorem
1.9) for G = R" and any given pair (p, g) satisfying 1 <p <2 < g < o0,
this result being extended to a general noncompact LCA G by Gaudry [5).
The argument given by Hormander (loc. cit. Theorem 1.6 and the remark
immediately following) for the case G = R" can also be extended to a
general LCA G and shows that, if either ¢ < 2 or p = 2, then every

T e Li(G) is such that JA“ is a measure [and indeed a measure of the form
Wiy, where yelLl (I if ¢ <2 and YyeLl (I if p =2, and so
Y e L. (') in either case ]. Thus the hypotheses made in Theorem 6.3
about p and ¢ are necessary for the validity of the conclusion.

PART 3: APPLICATIONS TO FOURIER SERIES

§ 7. Applications to divergence of Fourier series.
7.1 Throughout §§ 7-10, G will denote an infinite Hausdorff compact
Abelian group with character group I', and A; the Haar measure on G,

normalised so that 1;(G) =1. For any fe L*(G), f will denote the Fourier
transform of f; for any finite subset 4 of I,

S,f = Y faw (7.1)

yed

is the A-partial sum of the Fourier series of f; and sp (f) will stand for
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