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(2) Local convexity is needed in the proof of 3.1 since otherwise (2.2"), f
i.e., the boundedness of S — {xn : n e N} in E, does not guarantee the ]

existence of any continuous or bounded linear map T from lx(N) into E *

such that S is contained in the T-image of a bounded subset of l1(N). '

For it is plain that such a T can exist, only if the convex envelope S' of S %

is bounded in E. On the other hand, it is not difficult to verify that any
1

first countable linear topological space E, in which the convex envelope
of every bounded set (or of the range of every sequence converging to zero
in E is bounded, is necessarily locally convex.

(3) Naturally, local convexity of E may be dropped from the hypotheses
of 3.1, if one assumes in place of (2.2") that the convex envelope of
{xn : n e TV} is a bounded subset of E.

§ 4. Deduction of boundedness principles

4.1 Theorem. Suppose that E is a sequentially complete locally convex
space and that P is a set of bounded gauges on E. If f*(x) — sup {/ (x) :

feP} < oo for every xeE, then /* is bounded.

Proof. Suppose the contrary, that is, that/*(x) < oo for every xeE
and yet there exists a bounded subset B of E on which /* is unbounded.
Then we can choose xne B, fne P such that f„(xn) > n for every ne N.
Then (2.1), (2.2") and (2.3) are satisfied; hence, by 3.1, there exists xeE
such that /*(x) oo, which is the required contradiction.

4.2 Remarks. (1) If we assume also that E is infrabarrelled and that
each feP is continuous, it follows that/* is continuous, that is, that P is

equicontinuous if it is pointwise bounded; cf. [2], pp. 47, 480-81. For, if
V denotes the interval [—e, e], where e > 0, then

/*- i(F) H {f~\:feP}
is closed, convex and balanced and absorbs bounded sets in E. Since E
is infrabarrelled,/*~1(F) is therefore a neighbourhood of the origin in E
and thus /* is continuous^ as asserted.

(2) If one drops the hypothesis that E be locally convex (the remaining
assumptions of Theorem 4.1 remaining intact), the substance of
Remark 3.3 (3) shows that one may still conclude that f*(B) is bounded !'

whenever B is a subset of E whose convex envelope in E is bounded.
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However, even assuming that E is first countable and complete, one

can in general no longer conclude that/* is bounded (i.e., that f*(A) is

bounded for every bounded subset A of E) whenever it is finite-valued.

Counter-examples are easily given in the case of the familiar spaces

E F (N) with p e (0, 1).

Part 2: Applications to Multipliers

§ 5. (p, q)-multipliers which are not measures

5.1 Introduction. In this section and the following one we will use

the substance of § 3 to prove several apparently new properties of (p, q)-

multipliers. Let G be a locally compact group [all topological groups will
be assumed to be Hausdorff and, in this section, will be multiplicatively
written with identity e]. Denote by LP(G), where 1 S P S °o? the usual
Lebesgue space formed with a fixed left Haar measure XG on G; and by
Cc(G) the space of continuous complex-valued functions on G with
compact supports.

For öeG, define the left translation operator za and the right translation
operator pa by

^ag(x) gia'1 x) and

j respectively. A linear operator T from Cc(G) into Lq(G) is said to be a
I (left) (p, q)-multiplier if and only if

(i) T is continuous from Cc(G), equipped with the norm induced by
f LP(G), into L\G); and

j (ii) T commutes with left translations, that is Tza %aT for all a eG.
i

i A right (jp, q)-multiplier is defined in a similar manner with (ii) replaced
by

j (ii') Tpa paT for all a eG.

j Let Lqp(G) denote the Banach space of (p, ^-multipliers equipped with the
j customary norm, denoted by || • ||M, of continuous linear operators from

a subspace of LP{G) into Lq{G). That is, for each TeLqp(G), || T\\Ptq is
the smallest real number K satisfying
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