Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 16 (1970)

Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: NAIVELY CONSTRUCTIVE APPROACH TO BOUNDEDNESS
PRINCIPLES, WITH APPLICATIONS TO HARMONIC ANALYSIS

Autor: Edwards, R. E. / Price, J. F.

Kapitel: § 2. The construction when E is complete and first countable.

DOI: https://doi.org/10.5169/seals-43866

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-43866
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

— 258 —

Our final preliminary comment refers to boundedness of sets. If E is
any topological linear space, a subset 4 of E will be said to be bounded in
E if and only if to every neighbourhood U of 0 in E corresponds a number
r=r(4,U) > 0 such that r4 = {rx : x € A} is contained in U. If E is
first countable and d is a semimetric on E defining its topology, boundedness
in the above sense of a set A = E must not be confused with metric bounded-
ness [i.e., with the condition sup {d(x,y) :x€Ad,ye A} < o0]. It is in
order to minimise the possibility of this confusion that we use the term
“first countable” (an abbreviation for “satisfying the first axiom of count-
ability”) rather than “semimetrizable”.

§ 2. The construction when E is complete and first countable.

In this section, where E will always denote a complete first countable
(locally convex) space and P a set of bounded gauges on E, we will describe
the basic construction. Let f* denote the upper envelope of P.

If the sequence (x,) figuring in (1.1) and (1.2) is such that f*(x,) =
for some n e N, no constructional problem remains. So we shall hence-
forth assume the contrary.

2.1 THEOREM. Suppose that f and o are real numbers satisfying
B > a > 0 and that sequences (x,) in E, (f,) in P are such that:

f*(x,) < oo foreveryne N, (2.1)
lim,,  x, =0, (2.2)
Supnean(xn) = 0. (23)

Then infinite sequences n; < n, < ... of positive integers may be construc-
ted such that, for every sequence (y,) of real numbers satisfying

o« <v, B foreveryne N, (2.4)
the series
Dven Py Xn, 2.5)
is normally convergent in E, and
[*(x) 2 lim,, , f, (x) = (2.6)

for each sum x of (2.5).
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2.2 CONSTRUCTION AND PROOF. Let (o,) be an increasing sequence of
continuous seminorms on E which define its topology. By initial passage
to suitable subsequences, we may and will assume that (2.2) and (2.3) hold
in the stronger form:

ZnENO.n(xn) < 0, (2.2’)
lim,, -, o fu(x,) = 0. (2.3)

[To do this, define n,e N for ve N by induction in such a way that
ng<n, < ..,
g,(x,) £27" and f,,v (x,,v) >y 2.7

for all ve N. This is possible since by (2.2) we can determine n; € N such
that o,(x,) <2~ ' if n = n;, and then, by (2.3) and the fact that each
feP is finite valued, there exists n = n; such that f,(x,) > 1; denote the
smallest such n = n; by n,. When n; < n, < ... n; have been determined
so that (2.7) holds for 1 £ v £ j, find (see (2.2)) an integer n;, ; > n; such
that ¢,,,(x,) £2777 1 if n = n;,,. Then (2.3) shows that there exists
an integer n = n;, ( such that f(x,) > j-+ 1; put n;,; for the smallest
such integer n = n;, ;.]

So now we assume (2.1), (2.2) and (2.3') and define one sequence
ny <n, < .. of the required type in the following manner. (Other
possibilities are discussed in Remark 2.3 (2) below.) Let n, be the smallest
n € N such that

fu(xn) Z Pt

n,; may be determined by (2.3"). Suppose that v is a positive integer and
that positive integers n, < n, < ... < n, have been defined so that

f,,j (x,,v) <277 whenever 1 Zj<v,
fnv (xnv) = 5“_1 Z1§j<vfnv (xnj) -t .305_1 V.

[An empty sum is defined to be 0; then the conditions are all satisfied when
v = 1] Then (2.2°), (2.3") and the fact that each fe P is finite-valued
imply that there exists an integer n > n, which satisfies

f,,j (x,) <2771 whenever 1 <j<v+ 1,

o) 2 Be™ ! Yicicvir S (%, ) + Bo™t (v 1);

let n,,; be the smallest such n. We then have for each ve N:



— 260 —

V nv < nv+ 1>
f,,j (x,,v) <27V whenever 1 £j <, (2.8)
foy 60 Z Bt gy co i () + By, (2.9)

By (2.2") and (2.4), the sum (2.5) is normally convergent in E. Let x
be any sum of this series. To establish (2.6), write

X = uv+yvxnv+vv7

where u, = ) 1 i<, 7; X and v, is a sum of the series 2., y; X Thus

Py Xn = X — Uy — 0y, and so

dfy (50) = fo, Oy %) o () o @)+ fy @), (210)
Now, by (2.4),

f;lv (uv) é ﬂ 21 §j<vf;1v (xnj); (211)
and, by (2.4), (2.8) and the fact that each f, is bounded, hence continuous,
f;'v (vv) g ﬁ Zj>vf;lv (xnj) g ﬁ Zj>v Z—j = ﬁz-—v' (212)

By (2.10), (2.11) and (2.12)
afy, (%) < fo) () + B Xizjerts, () + B27,
and so, by (2.9),
B Y asierta, Gn) F By S o, )+ B Luzjrfs, () + B27
Hence
S @) 2 B =27,

which proves (2.6) and the construction is complete.

2.3 REMARKS. (1) If it is known that
D= {xeE :f*x) < o}

is dense in E, and if (x,) and ( f,) satisfy (2.2) and (2.3), we can approximate
each x, so closely by an element y, of D that (2.2) and (2.3) are left intact
on replacing x, by y,. The hypotheses (2.1)—(2.3) are satisfied when x,
is everywhere replaced by y,.
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(2) If it be supposed that (2.2") holds and that sequences (4,), (B, ,)
and (C,) are known such that lim B, , = O for every re€ N, lim C, = oo,

n— o n—roo

FHxy) 4 ) = A

maX ﬂ (xn) ;‘\-: Bll,)"

1=j=r

Jo (i) 2 G,

then it is easy to specify a function ¢, , : N X N — N in terms of (4,),
(B, ,) and (C,) such that (2.4) and (2.5) yield (2.6) for every sequence (n,)
such that C,,1 > o™t and n, 44 = ¢, 4(n,, v) for every ve N.

(3) Local convexity of E is not essential in 2.1 and 2.2. In the
contrary case one may proceed by introducing an invariant semimetric
(x,y) |— [x~ y] defining the topology of E, much as in [2], proof of
Theorem 6.1.1, or [15], Chapitre I, § 3, No. 1. Normal summability in
E of a series ) ,.yz, of elements of Emay then be taken to mean the con-
vergence of Y,y |z, |- In place of (2.2') arrange that

ZneN

which will ensure the normal convergence in E of (2.5) whenever (2.4)
holds (£ being assumed to be complete). The rest of the proof and con-
struction proceeds as before.

This method could, of course, be used when E is locally convex (and
first countable and complete); we have not done so because the seminorms
o, are usually more manageable in practice.

px, | < oo,

(4) A useful variant of 2.1 may be stated in the following terms.

2.4 Suppose given real numbers f > o > 0 and sequences (x,) in E
and (f,) in P such that

f*(x,) < oo foreveryne N, 7 2.1)
{xn ne N} 1s bounded in E, (22//)
SupneNf;x(‘xn) = 0. (23)

Then one can construct a sequence (4,) of real numbers with the following
properties:

An % 0 > ZneN An < ©O; (213)
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for every sequence (y,) satisfying (2.4) the series

ZneN ’yn'lnxn (2 14)

is normally convergent in E; and
J*x) = oo (2.15)

for every sum x of the series (2.14).
In the sequel we shall denote by /1 (N) the set of sequences (4,) satisfying
(2.13).

Proor. Define by recurrence a strictly increasing sequence (k,) of
positive integers, taking k, to the first k € N such that f(x;,) > 1° and
k,,, to be the first k€ N such that k > k, and f,(x,) > (n-+1)>. Then
apply 2.1 and 2.2 with x, and f, replaced by n~ 2 Xie and fkn respectively.

This furnishes at least one strictly increasing sequence (n,) of positive
integers such that (2.4) entails that the series
ZveN ’))v n;Z xkn (2'16)

is normally convergent in E and that (2.15) holds for every sum x of (2.16).
It thus suffices to define A, to be n, 2 when n = k,,v for some ve N and to

be zero for all other n € N; it 1s obvious that (2.13) is then satisfied.

§ 3. The construction when E is sequentially complete

3.1 In this section we assume merely that F is a locally convex space
which is sequentially complete. Again P will denote a set of bounded
gauges on FE, and f* will denote its upper envelope. Suppose given
sequences (x,) in £ and ( f,) in P such that (2.1), (2.2"") and (2.3) are satisfied.
Then the conclusion of 2.4 remains valid.

ProoF. Consider the continuous linear map T of I*(N) into E defined
by
1¢ = ZneN én Xy

Evidently, x, = Tu, for suitably chosen «, such that {a, : n € N} is a bounded
subset of I*(N). It therefore suffices to apply 2.4 with E replaced by
[Y(N), x, by a,, and f, by f, o T.

The following corollary will find application in §§ 5 and 6 below.
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