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Our final preliminary comment refers to boundedness of sets. If E is

any topological linear space, a subset A of E will be said to be bounded in
E if and only if to every neighbourhood U of 0 in E corresponds a number

r r (A, U) > 0 such that rA {rx : x e A} is contained in U. If E is

first countable and d is a semimetric on E defining its topology, boundedness
in the above sense of a set A ç E must not be confused with metric boundedness

[i.e., with the condition sup {d(x, y) : x e A, y e A} < oo]. It is in
order to minimise the possibility of this confusion that we use the term
"first countable" (an abbreviation for "satisfying the first axiom of count-
ability") rather than "semimetrizable".

§ 2. The construction when E is complete andfirst countable.

In this section, where E will always denote a complete first countable

(locally convex) space and P a set of bounded gauges on E, we will describe

the basic construction. Let /* denote the upper envelope of P.

If the sequence (x„) figuring in (1.1) and (1.2) is such that /*(*„) oo

for some ne N, no constructional problem remains. So we shall henceforth

assume the contrary.

2.1 Theorem. Suppose that ß and a are real numbers satisfying
ß > a > 0 and that sequences (xn) in £, (/n) in P are such that:

Then infinite sequences nx < n2 < °f positive integers may be constructed

such that, for every sequence (yn) of real numbers satisfying

/*(x„) < oo for every ne N, (2.1)

lim»->«> 0,

sup neNfn(xn) oo.

(2.2)

(2.3)

a ^ yn ^ ß for every ne N, (2.4)

the series

(2.5)

is normally convergent in E, and

f*(x) ^ \imv_ fn(x) co (2.6)

for each sum x of (2.5).
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I 2.2 Construction and proof. Let (<jv) be an increasing sequence of
continuous seminorms on E which define its topology. By initial passage

to suitable subsequences, we may and will assume that (2.2) and (2.3) hold

in the stronger form:

< 00> t2-2')

lim»->«,/,(*») °o- (2-3')

[To do this, define nve N for v e N by induction in such a way that

ni < n2 < >>•,

av (xn g 2"v and fn (xn > v (2.7)
V V V

for all v g N. This is possible since by (2.2) we can determine n\e N such

that CiCO ^ 2_1 if n ^ n°u and then, by (2.3) and the fact that each

f g P is finite valued, there exists n ^ n\ such that fn(xn) > 1 ; denote the

smallest such n ^ n\ by n1. When n1 < n2 < ttj have been determined

so that (2.7) holds for 1 ^ v ^ y, find (see (2.2)) an integer n°j+1 > rij such

that Gj + 1(x„) ^2"J~1 if n ^ n°j + 1. Then (2.3) shows that there exists

an integer n ^ n°j+1 such that fn(xn) > j + 1 ; put fij +1 for the smallest
such integer n ^ nj + 1.]

So now we assume (2.1), (2.2') and (2.3') and define one sequence

ni < n2 < of the required type in the following manner. (Other
possibilities are discussed in Remark 2.3 (2) below.) Let nx be the smallest

n g N such that

f„(xn) ^ ~1
;

n1 may be determined by (2.3'). Suppose that v is a positive integer and
that positive integers n1 < n2 < < nv have been defined so that

fn. CO ^ 2~v whenever 1 g j < v,

fnv(\)^ß^"1 El â+ ß<X" 1
V.

[An empty sum is defined to be 0; then the conditions are all satisfied when
v 1.] Then (2.2'), (2.3') and the fact that each feP is finite-valued
imply that there exists an integer n >which satisfies

fn.CO2~v_1 whenever 1 < v + 1,

fn CO ßrJ- E lg J < V + 1 fn (Xn) + * (v+1);

i let Hv T be the smallest such n. We then have for each v e AT-

J
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Tly < ïly +1?

A. (xn ^ 2~v whenever 1 ^ j < v, (2.8)

f„v(x„)è ßot~1 Xi âj<vf»+ (2.9)

By (2.2') and (2.4), the sum (2.5) is normally convergent in E. Let x
be any sum of this series. To establish (2.6), write

x wv + yv + vv,

where uv 7/ xn. and is a sum °f the series Ij>v yf xnr Thus

yv xn^ x — uv — vv, and so

a/ny (*„„) ^ fnv (Vv \)S fBy (*) + /„v (Wv) + fnv (®v)- (2.10)

Now, by (2.4),

f„v(uv) üßY^J<^fnv(\y, (2.11)

and, by (2.4), (2.8) and the fact that each fn is bounded, hence continuous,

f%(»v)g ß V.>v/„r (X„.) <£ j8 £,>v 2~J /?2~\ (2.12)

By (2.10), (2.11) and (2.12)

a/„v (-O ^ /„V (*) + ß Sigy<v/.v (*».) + /12~v,

and so, by (2.9),

ß Zisj<v/iv (4) + ßvg 4 (x) + ß Eigy<v/„v (4) + J92-'.

Hence

f„v(x)^ß(v-2-*),
which proves (2.6) and the construction is complete.

2.3 Remarks. (1) If it is known that

D*= {xeE : f*(x) < 00}

is dense in E, and if (xn) and (/„) satisfy (2.2) and (2.3), we can approximate
each xn so closely by an element yn of D that (2.2) and (2.3) are left intact

on replacing xn by yn. The hypotheses (2.1)—(2.3) are satisfied when xn

is everywhere replaced by yn.



— 261 —

(2) If it be supposed that (2.2') holds and that sequences (A„), (B„r)
and (C„) are known such that lim Bn r 0 for every lim C„ co,

n —* oo n~* co

f*(x i) + ••• +/*CO A»

max fj (xn) g Bn>r,
1 âjâr

fn On) t Cn9

then it is easy to specify a function (j)aiß : N X N -> N in terms of (An),

(Bn r) and (Cn) such that (2.4) and (2.5) yield (2.6) for every sequence (nv)

such that Cn g ßa~x and nv + 1 ^ 4><x,p(nv? v) f°r every veiV.

(3) Local convexity of E is not essential in 2.1 and 2.2. In the

contrary case one may proceed by introducing an invariant semimetric

(x, y) |-> I x—y I defining the topology of E, much as in [2], proof of
Theorem 6.1.1, or [15], Chapitre I, §3, No. 1. Normal summabihty in
E of a series Y,neNzn of elements of E may then be taken to mean the

convergence of Y,neN \ zn\- In place of (2.2') arrange that

EneW \ßX„\ < CO,

which will ensure the normal convergence in E of (2.5) whenever (2.4)
holds (E being assumed to be complete). The rest of the proof and
construction proceeds as before.

This method could, of course, be used when E is locally convex (and
first countable and complete) ; we have not done so because the seminorms

an are usually more manageable in practice.

(4) A useful variant of 2.1 may be stated in the following terms.

2.4 Suppose given real numbers ß > a > 0 and sequences (xn) in E
and (fn) in P such that

/*(^«) < 00 f°r every ne N, (2.1)

{xn :ne N} is bounded in E, (2.2")

SIiPneNÂix») *= 00. (2.3)

Then one can construct a sequence (2„) of real numbers with the following
properties :

^^0,E„s*A„<co; (2.13)
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for every sequence (y„) satisfying (2.4) the series

Z»eNynKx„ (2.14)

is normally convergent in E; and

/*(*) oo (2.15)

for every sum x of the series (2.14).
In the sequel we shall denote by ll(N) the set of sequences (Xn) satisfying

(2.13).

Proof. Define by recurrence a strictly increasing sequence (kn) of
positive integers, taking ki to the first k e N such that fk(xk) > l3 and

kn + 1 to be the first ke N such that k > kn and fk(xk) > (/z+1)3. Then

apply 2.1 and 2.2 with xn and fn replaced by n~2 xk and fk respectively.
n n

This furnishes at least one strictly increasing sequence (nv) of positive
integers such that (2.4) entails that the series

ZveN Tv«v~2 Xk (2.16)
V

is normally convergent in E and that (2.15) holds for every sum x of (2.16).

It thus suffices to define Xn to be n~2 when n kn for some v e N and to

be zero for all other ne N; it is obvious that (2.13) is then satisfied.

§ 3. The construction when E is sequentially complete

3.1 In this section we assume merely that E is a locally convex space
which is sequentially complete. Again P will denote a set of bounded

gauges on E, and /* will denote its upper envelope. Suppose given

sequences (xn) in E and (/„) inP such that (2.1), (2.2") and (2.3) are satisfied.

Then the conclusion of 2.4 remains valid.

Proof. Consider the continuous linear map T of ll{N) into E defined

by
TZ Y**NZnXn.

Evidently, xn Tan for suitably chosen ocn such that {a„ : ne N} is a bounded
subset of Z1^). It therefore suffices to apply 2.4 with E replaced by

l\N), xn by a„, and /„ by /„ o T.

The following corollary will find application in §§ 5 and 6 below.
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