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A NAIVELY CONSTRUCTIVE APPROACH TO

BOUNDEDNESS PRINCIPLES, WITH APPLICATIONS
TO HARMONIC ANALYSIS

by R. E. Edwards and J. F. Price

General Introduction

This paper is partly pedagogical and expository. Thus Part 1 (§§ 1-4)

presents a naively constructive approach to boundedness principles.
Although this construction leads to results differing but slightly from the

standard versions, we feel that this approach (which can be followed with
no overt reference to category, barrelled spaces,, and so on) offers some

pedagogical and expository advantages. We emphasise that the level of
constructivity is naive and not fundamental.

The remainder of the paper consists of applications of the constructive

procedure. In Part 2 (§§ 5, 6) the applications yield improvements of
recent results due to Price and to Gaudry concerning multipliers. In
Part 3 (§§7-10) the applications are to convergence and divergence of
Fourier series of continuous functions on compact Abelian groups.
These results (which may be known to the afficionados but which, as far
as we know, have not been published hitherto) characterise those compact
Abelian groups having the property that every continuous function has a

convergent Fourier series; and, in the remaining cases, applies the general
method of Part 1 to construct continuous functions with divergent Fourier
series.

Part 1: Boundedness principles

§ 1. Introduction and preliminaries

Let E denote a locally convex space and P a set of bounded gauges
on E; that is, each feP is a function with domain E and range a subset
of [0, go) such that

/ (x+j) ^ f(x)+ f(y (x, y e E),

/(ax) œ a/(x) (xeE, a > 0),
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(so that / (0) 0) and / is bounded on every bounded subset of E. In
all cases, if / is continuous, then it is bounded; the converse is true if E
is bornological ([2], p. 477). Note also that any seminorm is a positive
gauge function; so too are Re+u sup (Re u, 0) and Im+u sup (7m u, 0),
whenever u is a real-linear functional on E.

The boundedness principles discussed in this paper are those which
assert that, granted suitable conditions on E, if the upper envelope /* of
P is finite valued, then /* (which is evidently a gauge) is also bounded
(cf. [2], Ch. 7).

It is customary to prove this type of boundedness principle (with
continuous seminorms in place of bounded gauges) by appeal to assumed

properties of E (for example, that it be second category, or barrelled, or
sequentially complete and infrabarrelled) of a sort which renders the proof
almost effortless.

One indirect use of boundedness principles aims at establishing the
existence of misbehaviour, leaving aside any attempt to locate any specific
instance thereof (cf. Banach's famous "principe de condensation des

singularités"). We are here referring to situations in which a sequence
(xn) in E is known which satisfies

(xn) is bounded (or convergent-to-zero) in E (1.1)
and

sup„siV/*(^„) 00, (1.2)

and an appeal to a boundedness principle is then made to infer the existence

of one or more elements x of E satisfying

f*(x) oo. (1.3)

[The argument is simply that the negation of (1.3) implies, via a boundedness

principle, that /* is bounded (or continuous), and that this involves a

contradiction of the conjunction of (1.1) and (1.2).]
The alternative to be advocated in this paper amounts to seeking a

constructive procedure (involving no appeal to boundedness principles)
leading from (1.1) and (1.2) to specified elements x satisfying (1.3). To
do this seems all the more„natural when, as is often the case, a fair amount
of effort has already been expended in constructing a sequence (xn) satisfying
(1.1) and (1.2). Moreover, granted such a procedure, general boundedness

principles can be derived quite easily (see §§ 3 and 4). This incidental

approach to boundedness principles appears to be at least as successful

as the customary one.
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A construction of the desired type (a special case of which was

subsequently located in the Appendix to [6]; see also [12], Solution 20 in [13],

and [16]) is easily describable if E is complete and first countable (see §2

below). The procedure is then extendible to sequentially complete spaces E

(see § 3), and from this follows at once the corresponding version of the

boundedness principle applying to bounded gauges (see § 4). Continuity

of/* follows under appropriate additional conditions.

Since we shall be working with gauge functions which are assumed to

be merely bounded (rather than continuous), the usual standard passage

from a non-Hausdorff space to its Hausdorff quotient is not generally

available. For this reason, it seems worthwhile to formulate the results

without assuming that E is Hausdorff. (If E is bornological—for example,

first countable ([2], 6.1.1 and 7.3.2)—there is no problem.)
We shall write N for {1, 2, ...}; and the sequence (un)neN often be

written briefly as (w„).

If E is any locally convex space and (xn) a sequence of elements of E,

the series xn or Y,n= i xn is said to normally summable in E if
Zneiv a(xn) < 00 f°r every continuous seminorm a on E. The series

JlneN xn 1s said to be convergent in E and to have x eE as a sum, written

* ~ Xhen xn,if
lim^œ x0

for every continuous seminorm cr on E; the set of sums of a given convergent
series form precisely one equivalence class modulo {0}~. A series which
is both normally summable and convergent in E is said to be normally
convergent in E, or to converge normally in E. If E is sequentially complete,

any series which is normally summable in E is normally convergent in E.

Two comments regarding the hypotheses imposed upon E are worth
making at the outset. In the first place, we have concentrated on the

locally convex case, with only Remarks 2.3 (3), 3.3(3) and 4.2 (2) referring
to the alternative, the reason being that this is by far the most important
case for applications. Accordingly, throughout §§ 2-4, E will (except
where the contrary is explicitly indicated) be assumed to be locally convex.

In the second place, it would suffice for subsequent developments to
have Theorem 2.1 established for Banach spaces (and even merely for the
familiar Banach space /1 N)). However, only limited economy is gained
by dealing with this special case alone and it seems best to retain a degree
of generality which allows a more direct and explicit approach in the case
of (say) Fréchet spaces.
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Our final preliminary comment refers to boundedness of sets. If E is

any topological linear space, a subset A of E will be said to be bounded in
E if and only if to every neighbourhood U of 0 in E corresponds a number

r r (A, U) > 0 such that rA {rx : x e A} is contained in U. If E is

first countable and d is a semimetric on E defining its topology, boundedness
in the above sense of a set A ç E must not be confused with metric boundedness

[i.e., with the condition sup {d(x, y) : x e A, y e A} < oo]. It is in
order to minimise the possibility of this confusion that we use the term
"first countable" (an abbreviation for "satisfying the first axiom of count-
ability") rather than "semimetrizable".

§ 2. The construction when E is complete andfirst countable.

In this section, where E will always denote a complete first countable

(locally convex) space and P a set of bounded gauges on E, we will describe

the basic construction. Let /* denote the upper envelope of P.

If the sequence (x„) figuring in (1.1) and (1.2) is such that /*(*„) oo

for some ne N, no constructional problem remains. So we shall henceforth

assume the contrary.

2.1 Theorem. Suppose that ß and a are real numbers satisfying
ß > a > 0 and that sequences (xn) in £, (/n) in P are such that:

Then infinite sequences nx < n2 < °f positive integers may be constructed

such that, for every sequence (yn) of real numbers satisfying

/*(x„) < oo for every ne N, (2.1)

lim»->«> 0,

sup neNfn(xn) oo.

(2.2)

(2.3)

a ^ yn ^ ß for every ne N, (2.4)

the series

(2.5)

is normally convergent in E, and

f*(x) ^ \imv_ fn(x) co (2.6)

for each sum x of (2.5).
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I 2.2 Construction and proof. Let (<jv) be an increasing sequence of
continuous seminorms on E which define its topology. By initial passage

to suitable subsequences, we may and will assume that (2.2) and (2.3) hold

in the stronger form:

< 00> t2-2')

lim»->«,/,(*») °o- (2-3')

[To do this, define nve N for v e N by induction in such a way that

ni < n2 < >>•,

av (xn g 2"v and fn (xn > v (2.7)
V V V

for all v g N. This is possible since by (2.2) we can determine n\e N such

that CiCO ^ 2_1 if n ^ n°u and then, by (2.3) and the fact that each

f g P is finite valued, there exists n ^ n\ such that fn(xn) > 1 ; denote the

smallest such n ^ n\ by n1. When n1 < n2 < ttj have been determined

so that (2.7) holds for 1 ^ v ^ y, find (see (2.2)) an integer n°j+1 > rij such

that Gj + 1(x„) ^2"J~1 if n ^ n°j + 1. Then (2.3) shows that there exists

an integer n ^ n°j+1 such that fn(xn) > j + 1 ; put fij +1 for the smallest
such integer n ^ nj + 1.]

So now we assume (2.1), (2.2') and (2.3') and define one sequence

ni < n2 < of the required type in the following manner. (Other
possibilities are discussed in Remark 2.3 (2) below.) Let nx be the smallest

n g N such that

f„(xn) ^ ~1
;

n1 may be determined by (2.3'). Suppose that v is a positive integer and
that positive integers n1 < n2 < < nv have been defined so that

fn. CO ^ 2~v whenever 1 g j < v,

fnv(\)^ß^"1 El â+ ß<X" 1
V.

[An empty sum is defined to be 0; then the conditions are all satisfied when
v 1.] Then (2.2'), (2.3') and the fact that each feP is finite-valued
imply that there exists an integer n >which satisfies

fn.CO2~v_1 whenever 1 < v + 1,

fn CO ßrJ- E lg J < V + 1 fn (Xn) + * (v+1);

i let Hv T be the smallest such n. We then have for each v e AT-

J
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Tly < ïly +1?

A. (xn ^ 2~v whenever 1 ^ j < v, (2.8)

f„v(x„)è ßot~1 Xi âj<vf»+ (2.9)

By (2.2') and (2.4), the sum (2.5) is normally convergent in E. Let x
be any sum of this series. To establish (2.6), write

x wv + yv + vv,

where uv 7/ xn. and is a sum °f the series Ij>v yf xnr Thus

yv xn^ x — uv — vv, and so

a/ny (*„„) ^ fnv (Vv \)S fBy (*) + /„v (Wv) + fnv (®v)- (2.10)

Now, by (2.4),

f„v(uv) üßY^J<^fnv(\y, (2.11)

and, by (2.4), (2.8) and the fact that each fn is bounded, hence continuous,

f%(»v)g ß V.>v/„r (X„.) <£ j8 £,>v 2~J /?2~\ (2.12)

By (2.10), (2.11) and (2.12)

a/„v (-O ^ /„V (*) + ß Sigy<v/.v (*».) + /12~v,

and so, by (2.9),

ß Zisj<v/iv (4) + ßvg 4 (x) + ß Eigy<v/„v (4) + J92-'.

Hence

f„v(x)^ß(v-2-*),
which proves (2.6) and the construction is complete.

2.3 Remarks. (1) If it is known that

D*= {xeE : f*(x) < 00}

is dense in E, and if (xn) and (/„) satisfy (2.2) and (2.3), we can approximate
each xn so closely by an element yn of D that (2.2) and (2.3) are left intact

on replacing xn by yn. The hypotheses (2.1)—(2.3) are satisfied when xn

is everywhere replaced by yn.
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(2) If it be supposed that (2.2') holds and that sequences (A„), (B„r)
and (C„) are known such that lim Bn r 0 for every lim C„ co,

n —* oo n~* co

f*(x i) + ••• +/*CO A»

max fj (xn) g Bn>r,
1 âjâr

fn On) t Cn9

then it is easy to specify a function (j)aiß : N X N -> N in terms of (An),

(Bn r) and (Cn) such that (2.4) and (2.5) yield (2.6) for every sequence (nv)

such that Cn g ßa~x and nv + 1 ^ 4><x,p(nv? v) f°r every veiV.

(3) Local convexity of E is not essential in 2.1 and 2.2. In the

contrary case one may proceed by introducing an invariant semimetric

(x, y) |-> I x—y I defining the topology of E, much as in [2], proof of
Theorem 6.1.1, or [15], Chapitre I, §3, No. 1. Normal summabihty in
E of a series Y,neNzn of elements of E may then be taken to mean the

convergence of Y,neN \ zn\- In place of (2.2') arrange that

EneW \ßX„\ < CO,

which will ensure the normal convergence in E of (2.5) whenever (2.4)
holds (E being assumed to be complete). The rest of the proof and
construction proceeds as before.

This method could, of course, be used when E is locally convex (and
first countable and complete) ; we have not done so because the seminorms

an are usually more manageable in practice.

(4) A useful variant of 2.1 may be stated in the following terms.

2.4 Suppose given real numbers ß > a > 0 and sequences (xn) in E
and (fn) in P such that

/*(^«) < 00 f°r every ne N, (2.1)

{xn :ne N} is bounded in E, (2.2")

SIiPneNÂix») *= 00. (2.3)

Then one can construct a sequence (2„) of real numbers with the following
properties :

^^0,E„s*A„<co; (2.13)
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for every sequence (y„) satisfying (2.4) the series

Z»eNynKx„ (2.14)

is normally convergent in E; and

/*(*) oo (2.15)

for every sum x of the series (2.14).
In the sequel we shall denote by ll(N) the set of sequences (Xn) satisfying

(2.13).

Proof. Define by recurrence a strictly increasing sequence (kn) of
positive integers, taking ki to the first k e N such that fk(xk) > l3 and

kn + 1 to be the first ke N such that k > kn and fk(xk) > (/z+1)3. Then

apply 2.1 and 2.2 with xn and fn replaced by n~2 xk and fk respectively.
n n

This furnishes at least one strictly increasing sequence (nv) of positive
integers such that (2.4) entails that the series

ZveN Tv«v~2 Xk (2.16)
V

is normally convergent in E and that (2.15) holds for every sum x of (2.16).

It thus suffices to define Xn to be n~2 when n kn for some v e N and to

be zero for all other ne N; it is obvious that (2.13) is then satisfied.

§ 3. The construction when E is sequentially complete

3.1 In this section we assume merely that E is a locally convex space
which is sequentially complete. Again P will denote a set of bounded

gauges on E, and /* will denote its upper envelope. Suppose given

sequences (xn) in E and (/„) inP such that (2.1), (2.2") and (2.3) are satisfied.

Then the conclusion of 2.4 remains valid.

Proof. Consider the continuous linear map T of ll{N) into E defined

by
TZ Y**NZnXn.

Evidently, xn Tan for suitably chosen ocn such that {a„ : ne N} is a bounded
subset of Z1^). It therefore suffices to apply 2.4 with E replaced by

l\N), xn by a„, and /„ by /„ o T.

The following corollary will find application in §§ 5 and 6 below.
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3.2 Corollary. Suppose that H is a Hausdorff topological linear

space and that {EßieI is a family of linear subspaces of H such that

(i) Et is a Banach space relative to a norm || • ||f and the injection

Et -> H is continuous.

Let ê n {Ei : i e 1} be topologised as a topological linear space by

taking a base at 0 in ê formed of the sets {xei : sup^j jj x ||f < s},
where s ranges over positive numbers and J over finite subsets of I. Let

E be a sequentially closed linear subspace of ê and (fn)neN a sequence of
bounded gauges on E, and write /* for the upper envelope of (fn)neN.

Suppose finally that (.xn)neN is a sequence of elements of E such that

(ii) f*(xn) < oo for every ne N;

(iii) sup„eA, j] .v„ |]; < co for every i e 7;

(iv) sup nENf„(xn)oo.

The conclusion is that, given real numbers ß > a > 0, a sequence
(Âi)neiv G /+( A0 may be constructed such that, for every sequence (y„)neN

satisfying (2.4), the series (2.14) is normally convergent in E to a (unique)
sum x satisfying (2.15).

Proof. In view of 3.1, it will suffice to verify that ê (which is obviously
locally convex) is sequentially complete and Hausdorff. The latter property
is evidently present. As to the former, suppose that (y„)neN is a Cauchy
sequence in S. Then, by definition of the topology on <f, (y„) is Cauchy
in Ei for every z g I. Hence, by the first clause of (i), (yn) is convergent in
Ei to a limit y(i) e Ev The second clause of (i), plus the fact that H is

Hausdorff, entails that there exists y e H such that y(i) y for every i e I.
Accordingly, yei; and, since lim,^^ y(0 — y in Ei for every i e /,
lim^^^L, y in S. This shows that S is sequentially complete.

3.3 Remarks. (1) If the elements of P are seminorms (rather than
merely gauges), we may everywhere permit (yn) to be a sequence taking
values in the (real or complex) scalar field of E, replacing (2.4) by the
condition

a ^ I In \ ß f°r every n e N. (2.4')

This is easily seen by reverting to 2.2 and using the fact that now
fn(yx) I y I/„(*) for every xeE, every ne N and every scalar y. No
changes are needed in the choice of the nv.
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(2) Local convexity is needed in the proof of 3.1 since otherwise (2.2"), f
i.e., the boundedness of S — {xn : n e N} in E, does not guarantee the ]

existence of any continuous or bounded linear map T from lx(N) into E *

such that S is contained in the T-image of a bounded subset of l1(N). '

For it is plain that such a T can exist, only if the convex envelope S' of S %

is bounded in E. On the other hand, it is not difficult to verify that any
1

first countable linear topological space E, in which the convex envelope
of every bounded set (or of the range of every sequence converging to zero
in E is bounded, is necessarily locally convex.

(3) Naturally, local convexity of E may be dropped from the hypotheses
of 3.1, if one assumes in place of (2.2") that the convex envelope of
{xn : n e TV} is a bounded subset of E.

§ 4. Deduction of boundedness principles

4.1 Theorem. Suppose that E is a sequentially complete locally convex
space and that P is a set of bounded gauges on E. If f*(x) — sup {/ (x) :

feP} < oo for every xeE, then /* is bounded.

Proof. Suppose the contrary, that is, that/*(x) < oo for every xeE
and yet there exists a bounded subset B of E on which /* is unbounded.
Then we can choose xne B, fne P such that f„(xn) > n for every ne N.
Then (2.1), (2.2") and (2.3) are satisfied; hence, by 3.1, there exists xeE
such that /*(x) oo, which is the required contradiction.

4.2 Remarks. (1) If we assume also that E is infrabarrelled and that
each feP is continuous, it follows that/* is continuous, that is, that P is

equicontinuous if it is pointwise bounded; cf. [2], pp. 47, 480-81. For, if
V denotes the interval [—e, e], where e > 0, then

/*- i(F) H {f~\:feP}
is closed, convex and balanced and absorbs bounded sets in E. Since E
is infrabarrelled,/*~1(F) is therefore a neighbourhood of the origin in E
and thus /* is continuous^ as asserted.

(2) If one drops the hypothesis that E be locally convex (the remaining
assumptions of Theorem 4.1 remaining intact), the substance of
Remark 3.3 (3) shows that one may still conclude that f*(B) is bounded !'

whenever B is a subset of E whose convex envelope in E is bounded.
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However, even assuming that E is first countable and complete, one

can in general no longer conclude that/* is bounded (i.e., that f*(A) is

bounded for every bounded subset A of E) whenever it is finite-valued.

Counter-examples are easily given in the case of the familiar spaces

E F (N) with p e (0, 1).

Part 2: Applications to Multipliers

§ 5. (p, q)-multipliers which are not measures

5.1 Introduction. In this section and the following one we will use

the substance of § 3 to prove several apparently new properties of (p, q)-

multipliers. Let G be a locally compact group [all topological groups will
be assumed to be Hausdorff and, in this section, will be multiplicatively
written with identity e]. Denote by LP(G), where 1 S P S °o? the usual
Lebesgue space formed with a fixed left Haar measure XG on G; and by
Cc(G) the space of continuous complex-valued functions on G with
compact supports.

For öeG, define the left translation operator za and the right translation
operator pa by

^ag(x) gia'1 x) and

j respectively. A linear operator T from Cc(G) into Lq(G) is said to be a
I (left) (p, q)-multiplier if and only if

(i) T is continuous from Cc(G), equipped with the norm induced by
f LP(G), into L\G); and

j (ii) T commutes with left translations, that is Tza %aT for all a eG.
i

i A right (jp, q)-multiplier is defined in a similar manner with (ii) replaced
by

j (ii') Tpa paT for all a eG.

j Let Lqp(G) denote the Banach space of (p, ^-multipliers equipped with the
j customary norm, denoted by || • ||M, of continuous linear operators from

a subspace of LP{G) into Lq{G). That is, for each TeLqp(G), || T\\Ptq is
the smallest real number K satisfying
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