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A NAIVELY CONSTRUCTIVE APPROACH TO
BOUNDEDNESS PRINCIPLES, WITH APPLICATIONS
TO HARMONIC ANALYSIS

by R. E. EDWARDS and J. F. PRICE

GENERAL INTRODUCTION

This paper is partly pedagogical and expository. Thus Part 1 (§§ 1-4)
presents a naively constructive approach to boundedness principles.
Although this construction leads to results differing but slightly from the
standard versions, we feel that this approach (which can be followed with
no overt reference to category, barrelled spaces, and so on) offers some
pedagogical and expository advantages. We emphasise that the level of
constructivity is naive and not fundamental.

The remainder of the paper consists of applications of the constructive
procedure. In Part 2 (§§ 5, 6) the applications yield improvements of
recent results due to Price and to Gaudry concerning multipliers. In
Part 3 (§§ 7-10) the applications are to convergence and divergence of
Fourier series of continuous functions on compact Abelian groups.
These results (which may be known to the afficionados but which, as far
as we know, have not been published hitherto) characterise those compact
Abelian groups having the property that every continuous function has a
convergent Fourier series; and, in the remaining cases, applies the general
method of Part 1 to construct continuous functions with divergent Fourier
series.

PART 1: BOUNDEDNESS PRINCIPLES

§ 1. Introduction and preliminaries

Let £ denote a locally convex space and P a set of bounded gauges

on E; that is, each fe P is a function with domain E and range a subset
of [0, o0) such that

fx+y) = f(x)+ () (x,y€eE),
fax) = af (x) (xe€E, o> 0),
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(so that f(0) = 0) and f is bounded on every bounded subset of E. In
all cases, if f is continuous, then it is bounded; the converse is true if E
is bornological ([2], p. 477). Note also that any seminorm is a positive
gauge function; so too are Re™u = sup (Re u, 0) and Im*u = sup (Im u, 0),
whenever u is a real-linear functional on E.

The boundedness principles discussed in this paper are those which
assert that, granted suitable conditions on E, if the upper envelope f* of
P is finite valued, then f* (which is evidently a gauge) is also bounded
(cf. [2], Ch. 7).

It is customary to prove this type of boundedness principle (with con-
tinuous seminorms in place of bounded gauges) by appeal to assumed
properties of F (for example, that it be second category, or barrelled, or
sequentially complete and infrabarrelled) of a sort which renders the proof
almost effortless.

One indirect use of boundedness principles aims at establishing the
existence of misbehaviour, leaving aside any attempt to locate any specific
instance thereof (cf. Banach’s famous “principe de condensation des
singularités”). We are here referring to situations in which a sequence
(x,) in E is known which satisfies

(x,) 1s bounded (or convergent-to-zero) in £ (1.1)
and

SUP,ey f *(X,) = 00, (1.2)

and an appeal to a boundedness principle is then made to infer the existence
of one or more elements x of E satisfying

F*(x) = oo. (1.3)

[The argument is simply that the negation of (1.3) implies, via a boundedness
principle, that f* is bounded (or continuous), and that this involves a
contradiction of the conjunction of (1.1) and (1.2).]

The alternative to be advocated in this paper amounts to seeking a
constructive procedure (involving no appeal to boundedness principles)
leading from (1.1) and (1.2) to specified elements x satisfying (1.3). To
do this seems all the more.natural when, as is often the case, a fair amount
of effort has already been expended in constructing a sequence (x,) satisfying
(1.1) and (1.2). Moreover, granted such a procedure, general boundedness
principles can be derived quite easily (see §§ 3 and 4). This incidental
approach to boundedness principles appears to be at least as successful
as the customary one.
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A construction of the desired type (a special case of which was sub-
sequently located in the Appendix to [6]; see also [12], Solution 20 in [13],
and [16]) is easily describable if E is complete and first countable (see § 2
below). The procedure is then extendible to sequentially complete spaces E
(see §3), and from this follows at once the corresponding version of the
boundedness principle applying to bounded gauges (see §4). Continuity
of f* follows under appropriate additional conditions.

Since we shall be working with gauge functions which are assumed to
be merely bounded (rather than continuous), the usual standard passage
from a non-Hausdorff space to its Hausdorff quotient is not generally
available. For this reason, it seems worthwhile to formulate the results
without assuming that E is Hausdorff. (If £ is bornological—for example,
first countable ([2], 6.1.1 and 7.3.2)—there is no problem.)

We shall write N for {1,2,...}; and the sequence (u,),.y Will often be
written briefly as (u,).

If E is any locally convex space and (x,) a sequence of elements of E,
the series Y oy X, OF D nry X, is said to be normally summable in E if
Y weny 0(x,) < o for every continuous seminorm ¢ on E. The series
Y wen X, 18 said to be convergent in E and to have x € E as a sum, written

X ~ ZneN Xns lf
linflk-—*oo U(X_eri=1 xn) =0

for every continuous seminorm ¢ on £; the set of sums of a given convergent
series form precisely one equivalence class modulo {0} ~. A series which
is both normally summable and convergent in E is said to be normally
convergent in E, or to converge normally in E. 1If E is sequentially complete,
any series which is normally summable in F is normally convergent in E.

Two comments regarding the hypotheses imposed upon E are worth
making at the outset. In the first place, we have concentrated on the
locally convex case, with only Remarks 2.3 (3), 3.3(3) and 4.2 (2) referring
to the alternative, the reason being that this is by far the most important
case for applications. Accordingly, throughout §§2-4, E will (except
where the contrary is explicitly indicated) be assumed to be locally convex.

In the second place, it would suffice for subsequent developments to
have Theorem 2.1 established for Banach spaces (and even merely for the
familiar Banach space /' (N)). However, only limited economy is gained
- by dealing with this special case alone and it seems best to retain a degree
of generality which allows a more direct and explicit approach in the case
~ of (say) Fréchet spaces.
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Our final preliminary comment refers to boundedness of sets. If E is
any topological linear space, a subset 4 of E will be said to be bounded in
E if and only if to every neighbourhood U of 0 in E corresponds a number
r=r(4,U) > 0 such that r4 = {rx : x € A} is contained in U. If E is
first countable and d is a semimetric on E defining its topology, boundedness
in the above sense of a set A = E must not be confused with metric bounded-
ness [i.e., with the condition sup {d(x,y) :x€Ad,ye A} < o0]. It is in
order to minimise the possibility of this confusion that we use the term
“first countable” (an abbreviation for “satisfying the first axiom of count-
ability”) rather than “semimetrizable”.

§ 2. The construction when E is complete and first countable.

In this section, where E will always denote a complete first countable
(locally convex) space and P a set of bounded gauges on E, we will describe
the basic construction. Let f* denote the upper envelope of P.

If the sequence (x,) figuring in (1.1) and (1.2) is such that f*(x,) =
for some n e N, no constructional problem remains. So we shall hence-
forth assume the contrary.

2.1 THEOREM. Suppose that f and o are real numbers satisfying
B > a > 0 and that sequences (x,) in E, (f,) in P are such that:

f*(x,) < oo foreveryne N, (2.1)
lim,,  x, =0, (2.2)
Supnean(xn) = 0. (23)

Then infinite sequences n; < n, < ... of positive integers may be construc-
ted such that, for every sequence (y,) of real numbers satisfying

o« <v, B foreveryne N, (2.4)
the series
Dven Py Xn, 2.5)
is normally convergent in E, and
[*(x) 2 lim,, , f, (x) = (2.6)

for each sum x of (2.5).

S o RN
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2.2 CONSTRUCTION AND PROOF. Let (o,) be an increasing sequence of
continuous seminorms on E which define its topology. By initial passage
to suitable subsequences, we may and will assume that (2.2) and (2.3) hold
in the stronger form:

ZnENO.n(xn) < 0, (2.2’)
lim,, -, o fu(x,) = 0. (2.3)

[To do this, define n,e N for ve N by induction in such a way that
ng<n, < ..,
g,(x,) £27" and f,,v (x,,v) >y 2.7

for all ve N. This is possible since by (2.2) we can determine n; € N such
that o,(x,) <2~ ' if n = n;, and then, by (2.3) and the fact that each
feP is finite valued, there exists n = n; such that f,(x,) > 1; denote the
smallest such n = n; by n,. When n; < n, < ... n; have been determined
so that (2.7) holds for 1 £ v £ j, find (see (2.2)) an integer n;, ; > n; such
that ¢,,,(x,) £2777 1 if n = n;,,. Then (2.3) shows that there exists
an integer n = n;, ( such that f(x,) > j-+ 1; put n;,; for the smallest
such integer n = n;, ;.]

So now we assume (2.1), (2.2) and (2.3') and define one sequence
ny <n, < .. of the required type in the following manner. (Other
possibilities are discussed in Remark 2.3 (2) below.) Let n, be the smallest
n € N such that

fu(xn) Z Pt

n,; may be determined by (2.3"). Suppose that v is a positive integer and
that positive integers n, < n, < ... < n, have been defined so that

f,,j (x,,v) <277 whenever 1 Zj<v,
fnv (xnv) = 5“_1 Z1§j<vfnv (xnj) -t .305_1 V.

[An empty sum is defined to be 0; then the conditions are all satisfied when
v = 1] Then (2.2°), (2.3") and the fact that each fe P is finite-valued
imply that there exists an integer n > n, which satisfies

f,,j (x,) <2771 whenever 1 <j<v+ 1,

o) 2 Be™ ! Yicicvir S (%, ) + Bo™t (v 1);

let n,,; be the smallest such n. We then have for each ve N:
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V nv < nv+ 1>
f,,j (x,,v) <27V whenever 1 £j <, (2.8)
foy 60 Z Bt gy co i () + By, (2.9)

By (2.2") and (2.4), the sum (2.5) is normally convergent in E. Let x
be any sum of this series. To establish (2.6), write

X = uv+yvxnv+vv7

where u, = ) 1 i<, 7; X and v, is a sum of the series 2., y; X Thus

Py Xn = X — Uy — 0y, and so

dfy (50) = fo, Oy %) o () o @)+ fy @), (210)
Now, by (2.4),

f;lv (uv) é ﬂ 21 §j<vf;1v (xnj); (211)
and, by (2.4), (2.8) and the fact that each f, is bounded, hence continuous,
f;'v (vv) g ﬁ Zj>vf;lv (xnj) g ﬁ Zj>v Z—j = ﬁz-—v' (212)

By (2.10), (2.11) and (2.12)
afy, (%) < fo) () + B Xizjerts, () + B27,
and so, by (2.9),
B Y asierta, Gn) F By S o, )+ B Luzjrfs, () + B27
Hence
S @) 2 B =27,

which proves (2.6) and the construction is complete.

2.3 REMARKS. (1) If it is known that
D= {xeE :f*x) < o}

is dense in E, and if (x,) and ( f,) satisfy (2.2) and (2.3), we can approximate
each x, so closely by an element y, of D that (2.2) and (2.3) are left intact
on replacing x, by y,. The hypotheses (2.1)—(2.3) are satisfied when x,
is everywhere replaced by y,.
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(2) If it be supposed that (2.2") holds and that sequences (4,), (B, ,)
and (C,) are known such that lim B, , = O for every re€ N, lim C, = oo,

n— o n—roo

FHxy) 4 ) = A

maX ﬂ (xn) ;‘\-: Bll,)"

1=j=r

Jo (i) 2 G,

then it is easy to specify a function ¢, , : N X N — N in terms of (4,),
(B, ,) and (C,) such that (2.4) and (2.5) yield (2.6) for every sequence (n,)
such that C,,1 > o™t and n, 44 = ¢, 4(n,, v) for every ve N.

(3) Local convexity of E is not essential in 2.1 and 2.2. In the
contrary case one may proceed by introducing an invariant semimetric
(x,y) |— [x~ y] defining the topology of E, much as in [2], proof of
Theorem 6.1.1, or [15], Chapitre I, § 3, No. 1. Normal summability in
E of a series ) ,.yz, of elements of Emay then be taken to mean the con-
vergence of Y,y |z, |- In place of (2.2') arrange that

ZneN

which will ensure the normal convergence in E of (2.5) whenever (2.4)
holds (£ being assumed to be complete). The rest of the proof and con-
struction proceeds as before.

This method could, of course, be used when E is locally convex (and
first countable and complete); we have not done so because the seminorms
o, are usually more manageable in practice.

px, | < oo,

(4) A useful variant of 2.1 may be stated in the following terms.

2.4 Suppose given real numbers f > o > 0 and sequences (x,) in E
and (f,) in P such that

f*(x,) < oo foreveryne N, 7 2.1)
{xn ne N} 1s bounded in E, (22//)
SupneNf;x(‘xn) = 0. (23)

Then one can construct a sequence (4,) of real numbers with the following
properties:

An % 0 > ZneN An < ©O; (213)
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for every sequence (y,) satisfying (2.4) the series

ZneN ’yn'lnxn (2 14)

is normally convergent in E; and
J*x) = oo (2.15)

for every sum x of the series (2.14).
In the sequel we shall denote by /1 (N) the set of sequences (4,) satisfying
(2.13).

Proor. Define by recurrence a strictly increasing sequence (k,) of
positive integers, taking k, to the first k € N such that f(x;,) > 1° and
k,,, to be the first k€ N such that k > k, and f,(x,) > (n-+1)>. Then
apply 2.1 and 2.2 with x, and f, replaced by n~ 2 Xie and fkn respectively.

This furnishes at least one strictly increasing sequence (n,) of positive
integers such that (2.4) entails that the series
ZveN ’))v n;Z xkn (2'16)

is normally convergent in E and that (2.15) holds for every sum x of (2.16).
It thus suffices to define A, to be n, 2 when n = k,,v for some ve N and to

be zero for all other n € N; it 1s obvious that (2.13) is then satisfied.

§ 3. The construction when E is sequentially complete

3.1 In this section we assume merely that F is a locally convex space
which is sequentially complete. Again P will denote a set of bounded
gauges on FE, and f* will denote its upper envelope. Suppose given
sequences (x,) in £ and ( f,) in P such that (2.1), (2.2"") and (2.3) are satisfied.
Then the conclusion of 2.4 remains valid.

ProoF. Consider the continuous linear map T of I*(N) into E defined
by
1¢ = ZneN én Xy

Evidently, x, = Tu, for suitably chosen «, such that {a, : n € N} is a bounded
subset of I*(N). It therefore suffices to apply 2.4 with E replaced by
[Y(N), x, by a,, and f, by f, o T.

The following corollary will find application in §§ 5 and 6 below.
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3.2 COROLLARY. Suppose that H is a Hausdorff topological linear
space and that (E;),.; is a family of linear subspaces of H such that

(i) E; is a Banach space relative to a norm || -||; and the injection
E, - H is continuous.

Let & = {E;:iel} be topologised as a topological linear space by
taking a base at 0 in & formed of the sets {x €& :supy,||x||; < &},
where ¢ ranges over positive numbers and J over finite subsets of /. Let
E be a sequentially closed linear subspace of & and (f,),.y @ sequence of
bounded gauges on E, and write /* for the upper envelope of (/,)nen-
Suppose finally that (x,),.y is a sequence of elements of £ such that

(1) f*(x,) < oo forevery ne N;

(i) Sup,ey || x, ||; < oo for every ie I;

(IV) SupneNf;l(xn) = 0.

The conclusion is that, given real numbers f > a > 0, a sequence
(A)nen € [3(N) may be constructed such that, for every sequence (y,),cx
satisfying (2.4), the series (2.14) is normally convergent in £ to a (unique)
sum x satisfying (2.15).

Proor. In view of 3.1, it will suffice to verify that & (which is obviously
locally convex) is sequentially complete and Hausdorff. The latter property
is evidently present. As to the former, suppose that (y,),.y is @ Cauchy
sequence in &. Then, by definition of the topology on &, (y,) is Cauchy
in E; for every i € I. Hence, by the first clause of (i), (y,) is convergent in
E; to a limit y.;y€ E;. The second clause of (i), plus the fact that H is
Hausdorff, entails that there exists y € H such that y ;) = y for every i e L.
Accordingly, y € &; and, since lim, ., .y, = y;, = y in E; for every i€ I,
lim,. y, =y in &. This shows that & is sequentially complete.

3.3 REMARKS. (1) If the elements of P are seminorms (rather than
merely gauges), we may everywhere permit (y,) to be a sequence taking
values in the (real or complex) scalar field of E, replacing (2.4) by the
condition

o= | Vu | < [ foreveryne N. (2.4

This 1is easily seen by reverting to 2.2 and using the fact that now

fo(yx) = | v | fi(x) for every xeE, every ne N and every scalar y. No
changes are needed in the choice of the n,.
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(2) Local convexity is needed in the proof of 3.1 since otherwise (2.2"),
ie., the boundedness of S = {x,:ne N} in E, does not guarantee the
existence of any continuous or bounded linear map T from /[}(N) into E
such that S is contained in the 7-image of a bounded subset of [!(N).
For it is plain that such a T can exist, only if the convex envelope S’ of S
is bounded in E. On the other hand, it is not difficult to verify that any
first countable linear topological space E, in which the convex envelope
of every bounded set (or of the range of every sequence converging to zero
in F) is bounded, is necessarily locally convex.

(3) Naturally, local convexity of E may be dropped from the hypotheses
of 3.1, if one assumes in place of (2.2") that the convex envelope of
{x, :ne N} is a bounded subset of E.

§ 4. Deduction of boundedness principles

4.1 TaroreM. Suppose that E is a sequentially complete locally convex
space and that P is a set of bounded gauges on E. If f*(x) = sup { f(x) :
feP} < o for every x € E, then f* is bounded.

Proor. Suppose the contrary, that is, that f*(x) < oo for every x € E
and yet there exists a bounded subset B of £ on which f* is unbounded.
Then we can choose x,e B, f, € P such that f,(x,) > n for every ne N.
Then (2.1), (2.2"”") and (2.3) are satisfied; hence, by 3.1, there exists xe F
such that f*(x) = oo, which is the required contradiction.

4.2 ReMARkS. (1) If we assume also that E is infrabarrelled and that
each fe P is continuous, it follows that /* is continuous, that is, that P is
equicontinuous if it is pointwise bounded; cf. [2], pp. 47, 480-81. For, if
V denotes the interval [—e¢, €], where ¢ > 0, then

[*V) =0{f (V) :fe P}

is closed, convex and balanced and absorbs bounded sets in E. Since E
is infrabarrelled, f* ~ (V) is therefore a neighbourhood of the origin in E
and thus f* is continuous, as asserted.

(2) If one drops the hypothesis that £ be locally convex (the remaining
assumptions of Theorem 4.1 remaining intact), the substance of Re-
mark 3.3 (3) shows that one may still conclude that f*(B) is bounded
whenever B is a subset of E whose convex envelope in E is bounded.
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However, even assuming that E is first countable and complete, one
can in general no longer conclude that f* is bounded (i.e., that f*(4) is
bounded for every bounded subset 4 of E) whenever it is finite-valued.
Counter-examples are easily given in the case of the familiar spaces
E =[P (N) with pe (0, 1).

PART 2: APPLICATIONS TO MULTIPLIERS

§ 5. (p, q)-multipliers which are not measures

5.1 INTRODUCTION. In this section and the following one we will use
the substance of § 3 to prove several apparently new properties of (p, g)-
multipliers. Let G be a locally compact group [all topological groups will
be assumed to be Hausdorff and, in this section, will be multiplicatively
written with identity e¢]. Denote by L?(G), where 1 < p £ o0, the usual
Lebesgue space formed with a fixed left Haar measure 15 on G; and by
C/G) the space of continuous complex-valued functions on G with
compact supports.

For a € G, define the left translation operator 7, and the right translation
operator p, by

1,8(x) =g(@ 'x) and p,g(x) =g (xa™);

respectively. A linear operator 7 from C.(G) into LYG) is said to be a
(left) (p, q)-multiplier if and only if

(i) T is continuous from C.(G), equipped with the norm induced by
L7(G), into LYG); and

(i) T commutes with left translations, that is Tt, = 1,T for all a € G.

A right (p, @)-multiplier is defined in a similar manner with (ii) replaced
by

) Tp, = p, T forall ae G.

Let L;(G) denote the Banach space of (p, g)-multipliers equipped with the
customary norm, denoted by || - ||,.,, of continuous linear operators from
a subspace of L?(G) into LYG). That is, for each Te LYG), || T||,., is
the smallest real number K satisfying

[Tl = K|l ],
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