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A NAIVELY CONSTRUCTIVE APPROACH TO
BOUNDEDNESS PRINCIPLES, WITH APPLICATIONS
TO HARMONIC ANALYSIS

by R. E. EDWARDS and J. F. PRICE

GENERAL INTRODUCTION

This paper is partly pedagogical and expository. Thus Part 1 (§§ 1-4)
presents a naively constructive approach to boundedness principles.
Although this construction leads to results differing but slightly from the
standard versions, we feel that this approach (which can be followed with
no overt reference to category, barrelled spaces, and so on) offers some
pedagogical and expository advantages. We emphasise that the level of
constructivity is naive and not fundamental.

The remainder of the paper consists of applications of the constructive
procedure. In Part 2 (§§ 5, 6) the applications yield improvements of
recent results due to Price and to Gaudry concerning multipliers. In
Part 3 (§§ 7-10) the applications are to convergence and divergence of
Fourier series of continuous functions on compact Abelian groups.
These results (which may be known to the afficionados but which, as far
as we know, have not been published hitherto) characterise those compact
Abelian groups having the property that every continuous function has a
convergent Fourier series; and, in the remaining cases, applies the general
method of Part 1 to construct continuous functions with divergent Fourier
series.

PART 1: BOUNDEDNESS PRINCIPLES

§ 1. Introduction and preliminaries

Let £ denote a locally convex space and P a set of bounded gauges

on E; that is, each fe P is a function with domain E and range a subset
of [0, o0) such that

fx+y) = f(x)+ () (x,y€eE),
fax) = af (x) (xe€E, o> 0),
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(so that f(0) = 0) and f is bounded on every bounded subset of E. In
all cases, if f is continuous, then it is bounded; the converse is true if E
is bornological ([2], p. 477). Note also that any seminorm is a positive
gauge function; so too are Re™u = sup (Re u, 0) and Im*u = sup (Im u, 0),
whenever u is a real-linear functional on E.

The boundedness principles discussed in this paper are those which
assert that, granted suitable conditions on E, if the upper envelope f* of
P is finite valued, then f* (which is evidently a gauge) is also bounded
(cf. [2], Ch. 7).

It is customary to prove this type of boundedness principle (with con-
tinuous seminorms in place of bounded gauges) by appeal to assumed
properties of F (for example, that it be second category, or barrelled, or
sequentially complete and infrabarrelled) of a sort which renders the proof
almost effortless.

One indirect use of boundedness principles aims at establishing the
existence of misbehaviour, leaving aside any attempt to locate any specific
instance thereof (cf. Banach’s famous “principe de condensation des
singularités”). We are here referring to situations in which a sequence
(x,) in E is known which satisfies

(x,) 1s bounded (or convergent-to-zero) in £ (1.1)
and

SUP,ey f *(X,) = 00, (1.2)

and an appeal to a boundedness principle is then made to infer the existence
of one or more elements x of E satisfying

F*(x) = oo. (1.3)

[The argument is simply that the negation of (1.3) implies, via a boundedness
principle, that f* is bounded (or continuous), and that this involves a
contradiction of the conjunction of (1.1) and (1.2).]

The alternative to be advocated in this paper amounts to seeking a
constructive procedure (involving no appeal to boundedness principles)
leading from (1.1) and (1.2) to specified elements x satisfying (1.3). To
do this seems all the more.natural when, as is often the case, a fair amount
of effort has already been expended in constructing a sequence (x,) satisfying
(1.1) and (1.2). Moreover, granted such a procedure, general boundedness
principles can be derived quite easily (see §§ 3 and 4). This incidental
approach to boundedness principles appears to be at least as successful
as the customary one.
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A construction of the desired type (a special case of which was sub-
sequently located in the Appendix to [6]; see also [12], Solution 20 in [13],
and [16]) is easily describable if E is complete and first countable (see § 2
below). The procedure is then extendible to sequentially complete spaces E
(see §3), and from this follows at once the corresponding version of the
boundedness principle applying to bounded gauges (see §4). Continuity
of f* follows under appropriate additional conditions.

Since we shall be working with gauge functions which are assumed to
be merely bounded (rather than continuous), the usual standard passage
from a non-Hausdorff space to its Hausdorff quotient is not generally
available. For this reason, it seems worthwhile to formulate the results
without assuming that E is Hausdorff. (If £ is bornological—for example,
first countable ([2], 6.1.1 and 7.3.2)—there is no problem.)

We shall write N for {1,2,...}; and the sequence (u,),.y Will often be
written briefly as (u,).

If E is any locally convex space and (x,) a sequence of elements of E,
the series Y oy X, OF D nry X, is said to be normally summable in E if
Y weny 0(x,) < o for every continuous seminorm ¢ on E. The series
Y wen X, 18 said to be convergent in E and to have x € E as a sum, written

X ~ ZneN Xns lf
linflk-—*oo U(X_eri=1 xn) =0

for every continuous seminorm ¢ on £; the set of sums of a given convergent
series form precisely one equivalence class modulo {0} ~. A series which
is both normally summable and convergent in E is said to be normally
convergent in E, or to converge normally in E. 1If E is sequentially complete,
any series which is normally summable in F is normally convergent in E.

Two comments regarding the hypotheses imposed upon E are worth
making at the outset. In the first place, we have concentrated on the
locally convex case, with only Remarks 2.3 (3), 3.3(3) and 4.2 (2) referring
to the alternative, the reason being that this is by far the most important
case for applications. Accordingly, throughout §§2-4, E will (except
where the contrary is explicitly indicated) be assumed to be locally convex.

In the second place, it would suffice for subsequent developments to
have Theorem 2.1 established for Banach spaces (and even merely for the
familiar Banach space /' (N)). However, only limited economy is gained
- by dealing with this special case alone and it seems best to retain a degree
of generality which allows a more direct and explicit approach in the case
~ of (say) Fréchet spaces.




— 258 —

Our final preliminary comment refers to boundedness of sets. If E is
any topological linear space, a subset 4 of E will be said to be bounded in
E if and only if to every neighbourhood U of 0 in E corresponds a number
r=r(4,U) > 0 such that r4 = {rx : x € A} is contained in U. If E is
first countable and d is a semimetric on E defining its topology, boundedness
in the above sense of a set A = E must not be confused with metric bounded-
ness [i.e., with the condition sup {d(x,y) :x€Ad,ye A} < o0]. It is in
order to minimise the possibility of this confusion that we use the term
“first countable” (an abbreviation for “satisfying the first axiom of count-
ability”) rather than “semimetrizable”.

§ 2. The construction when E is complete and first countable.

In this section, where E will always denote a complete first countable
(locally convex) space and P a set of bounded gauges on E, we will describe
the basic construction. Let f* denote the upper envelope of P.

If the sequence (x,) figuring in (1.1) and (1.2) is such that f*(x,) =
for some n e N, no constructional problem remains. So we shall hence-
forth assume the contrary.

2.1 THEOREM. Suppose that f and o are real numbers satisfying
B > a > 0 and that sequences (x,) in E, (f,) in P are such that:

f*(x,) < oo foreveryne N, (2.1)
lim,,  x, =0, (2.2)
Supnean(xn) = 0. (23)

Then infinite sequences n; < n, < ... of positive integers may be construc-
ted such that, for every sequence (y,) of real numbers satisfying

o« <v, B foreveryne N, (2.4)
the series
Dven Py Xn, 2.5)
is normally convergent in E, and
[*(x) 2 lim,, , f, (x) = (2.6)

for each sum x of (2.5).

S o RN
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2.2 CONSTRUCTION AND PROOF. Let (o,) be an increasing sequence of
continuous seminorms on E which define its topology. By initial passage
to suitable subsequences, we may and will assume that (2.2) and (2.3) hold
in the stronger form:

ZnENO.n(xn) < 0, (2.2’)
lim,, -, o fu(x,) = 0. (2.3)

[To do this, define n,e N for ve N by induction in such a way that
ng<n, < ..,
g,(x,) £27" and f,,v (x,,v) >y 2.7

for all ve N. This is possible since by (2.2) we can determine n; € N such
that o,(x,) <2~ ' if n = n;, and then, by (2.3) and the fact that each
feP is finite valued, there exists n = n; such that f,(x,) > 1; denote the
smallest such n = n; by n,. When n; < n, < ... n; have been determined
so that (2.7) holds for 1 £ v £ j, find (see (2.2)) an integer n;, ; > n; such
that ¢,,,(x,) £2777 1 if n = n;,,. Then (2.3) shows that there exists
an integer n = n;, ( such that f(x,) > j-+ 1; put n;,; for the smallest
such integer n = n;, ;.]

So now we assume (2.1), (2.2) and (2.3') and define one sequence
ny <n, < .. of the required type in the following manner. (Other
possibilities are discussed in Remark 2.3 (2) below.) Let n, be the smallest
n € N such that

fu(xn) Z Pt

n,; may be determined by (2.3"). Suppose that v is a positive integer and
that positive integers n, < n, < ... < n, have been defined so that

f,,j (x,,v) <277 whenever 1 Zj<v,
fnv (xnv) = 5“_1 Z1§j<vfnv (xnj) -t .305_1 V.

[An empty sum is defined to be 0; then the conditions are all satisfied when
v = 1] Then (2.2°), (2.3") and the fact that each fe P is finite-valued
imply that there exists an integer n > n, which satisfies

f,,j (x,) <2771 whenever 1 <j<v+ 1,

o) 2 Be™ ! Yicicvir S (%, ) + Bo™t (v 1);

let n,,; be the smallest such n. We then have for each ve N:



— 260 —

V nv < nv+ 1>
f,,j (x,,v) <27V whenever 1 £j <, (2.8)
foy 60 Z Bt gy co i () + By, (2.9)

By (2.2") and (2.4), the sum (2.5) is normally convergent in E. Let x
be any sum of this series. To establish (2.6), write

X = uv+yvxnv+vv7

where u, = ) 1 i<, 7; X and v, is a sum of the series 2., y; X Thus

Py Xn = X — Uy — 0y, and so

dfy (50) = fo, Oy %) o () o @)+ fy @), (210)
Now, by (2.4),

f;lv (uv) é ﬂ 21 §j<vf;1v (xnj); (211)
and, by (2.4), (2.8) and the fact that each f, is bounded, hence continuous,
f;'v (vv) g ﬁ Zj>vf;lv (xnj) g ﬁ Zj>v Z—j = ﬁz-—v' (212)

By (2.10), (2.11) and (2.12)
afy, (%) < fo) () + B Xizjerts, () + B27,
and so, by (2.9),
B Y asierta, Gn) F By S o, )+ B Luzjrfs, () + B27
Hence
S @) 2 B =27,

which proves (2.6) and the construction is complete.

2.3 REMARKS. (1) If it is known that
D= {xeE :f*x) < o}

is dense in E, and if (x,) and ( f,) satisfy (2.2) and (2.3), we can approximate
each x, so closely by an element y, of D that (2.2) and (2.3) are left intact
on replacing x, by y,. The hypotheses (2.1)—(2.3) are satisfied when x,
is everywhere replaced by y,.
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(2) If it be supposed that (2.2") holds and that sequences (4,), (B, ,)
and (C,) are known such that lim B, , = O for every re€ N, lim C, = oo,

n— o n—roo

FHxy) 4 ) = A

maX ﬂ (xn) ;‘\-: Bll,)"

1=j=r

Jo (i) 2 G,

then it is easy to specify a function ¢, , : N X N — N in terms of (4,),
(B, ,) and (C,) such that (2.4) and (2.5) yield (2.6) for every sequence (n,)
such that C,,1 > o™t and n, 44 = ¢, 4(n,, v) for every ve N.

(3) Local convexity of E is not essential in 2.1 and 2.2. In the
contrary case one may proceed by introducing an invariant semimetric
(x,y) |— [x~ y] defining the topology of E, much as in [2], proof of
Theorem 6.1.1, or [15], Chapitre I, § 3, No. 1. Normal summability in
E of a series ) ,.yz, of elements of Emay then be taken to mean the con-
vergence of Y,y |z, |- In place of (2.2') arrange that

ZneN

which will ensure the normal convergence in E of (2.5) whenever (2.4)
holds (£ being assumed to be complete). The rest of the proof and con-
struction proceeds as before.

This method could, of course, be used when E is locally convex (and
first countable and complete); we have not done so because the seminorms
o, are usually more manageable in practice.

px, | < oo,

(4) A useful variant of 2.1 may be stated in the following terms.

2.4 Suppose given real numbers f > o > 0 and sequences (x,) in E
and (f,) in P such that

f*(x,) < oo foreveryne N, 7 2.1)
{xn ne N} 1s bounded in E, (22//)
SupneNf;x(‘xn) = 0. (23)

Then one can construct a sequence (4,) of real numbers with the following
properties:

An % 0 > ZneN An < ©O; (213)
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for every sequence (y,) satisfying (2.4) the series

ZneN ’yn'lnxn (2 14)

is normally convergent in E; and
J*x) = oo (2.15)

for every sum x of the series (2.14).
In the sequel we shall denote by /1 (N) the set of sequences (4,) satisfying
(2.13).

Proor. Define by recurrence a strictly increasing sequence (k,) of
positive integers, taking k, to the first k € N such that f(x;,) > 1° and
k,,, to be the first k€ N such that k > k, and f,(x,) > (n-+1)>. Then
apply 2.1 and 2.2 with x, and f, replaced by n~ 2 Xie and fkn respectively.

This furnishes at least one strictly increasing sequence (n,) of positive
integers such that (2.4) entails that the series
ZveN ’))v n;Z xkn (2'16)

is normally convergent in E and that (2.15) holds for every sum x of (2.16).
It thus suffices to define A, to be n, 2 when n = k,,v for some ve N and to

be zero for all other n € N; it 1s obvious that (2.13) is then satisfied.

§ 3. The construction when E is sequentially complete

3.1 In this section we assume merely that F is a locally convex space
which is sequentially complete. Again P will denote a set of bounded
gauges on FE, and f* will denote its upper envelope. Suppose given
sequences (x,) in £ and ( f,) in P such that (2.1), (2.2"") and (2.3) are satisfied.
Then the conclusion of 2.4 remains valid.

ProoF. Consider the continuous linear map T of I*(N) into E defined
by
1¢ = ZneN én Xy

Evidently, x, = Tu, for suitably chosen «, such that {a, : n € N} is a bounded
subset of I*(N). It therefore suffices to apply 2.4 with E replaced by
[Y(N), x, by a,, and f, by f, o T.

The following corollary will find application in §§ 5 and 6 below.
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3.2 COROLLARY. Suppose that H is a Hausdorff topological linear
space and that (E;),.; is a family of linear subspaces of H such that

(i) E; is a Banach space relative to a norm || -||; and the injection
E, - H is continuous.

Let & = {E;:iel} be topologised as a topological linear space by
taking a base at 0 in & formed of the sets {x €& :supy,||x||; < &},
where ¢ ranges over positive numbers and J over finite subsets of /. Let
E be a sequentially closed linear subspace of & and (f,),.y @ sequence of
bounded gauges on E, and write /* for the upper envelope of (/,)nen-
Suppose finally that (x,),.y is a sequence of elements of £ such that

(1) f*(x,) < oo forevery ne N;

(i) Sup,ey || x, ||; < oo for every ie I;

(IV) SupneNf;l(xn) = 0.

The conclusion is that, given real numbers f > a > 0, a sequence
(A)nen € [3(N) may be constructed such that, for every sequence (y,),cx
satisfying (2.4), the series (2.14) is normally convergent in £ to a (unique)
sum x satisfying (2.15).

Proor. In view of 3.1, it will suffice to verify that & (which is obviously
locally convex) is sequentially complete and Hausdorff. The latter property
is evidently present. As to the former, suppose that (y,),.y is @ Cauchy
sequence in &. Then, by definition of the topology on &, (y,) is Cauchy
in E; for every i € I. Hence, by the first clause of (i), (y,) is convergent in
E; to a limit y.;y€ E;. The second clause of (i), plus the fact that H is
Hausdorff, entails that there exists y € H such that y ;) = y for every i e L.
Accordingly, y € &; and, since lim, ., .y, = y;, = y in E; for every i€ I,
lim,. y, =y in &. This shows that & is sequentially complete.

3.3 REMARKS. (1) If the elements of P are seminorms (rather than
merely gauges), we may everywhere permit (y,) to be a sequence taking
values in the (real or complex) scalar field of E, replacing (2.4) by the
condition

o= | Vu | < [ foreveryne N. (2.4

This 1is easily seen by reverting to 2.2 and using the fact that now

fo(yx) = | v | fi(x) for every xeE, every ne N and every scalar y. No
changes are needed in the choice of the n,.
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(2) Local convexity is needed in the proof of 3.1 since otherwise (2.2"),
ie., the boundedness of S = {x,:ne N} in E, does not guarantee the
existence of any continuous or bounded linear map T from /[}(N) into E
such that S is contained in the 7-image of a bounded subset of [!(N).
For it is plain that such a T can exist, only if the convex envelope S’ of S
is bounded in E. On the other hand, it is not difficult to verify that any
first countable linear topological space E, in which the convex envelope
of every bounded set (or of the range of every sequence converging to zero
in F) is bounded, is necessarily locally convex.

(3) Naturally, local convexity of E may be dropped from the hypotheses
of 3.1, if one assumes in place of (2.2") that the convex envelope of
{x, :ne N} is a bounded subset of E.

§ 4. Deduction of boundedness principles

4.1 TaroreM. Suppose that E is a sequentially complete locally convex
space and that P is a set of bounded gauges on E. If f*(x) = sup { f(x) :
feP} < o for every x € E, then f* is bounded.

Proor. Suppose the contrary, that is, that f*(x) < oo for every x € E
and yet there exists a bounded subset B of £ on which f* is unbounded.
Then we can choose x,e B, f, € P such that f,(x,) > n for every ne N.
Then (2.1), (2.2"”") and (2.3) are satisfied; hence, by 3.1, there exists xe F
such that f*(x) = oo, which is the required contradiction.

4.2 ReMARkS. (1) If we assume also that E is infrabarrelled and that
each fe P is continuous, it follows that /* is continuous, that is, that P is
equicontinuous if it is pointwise bounded; cf. [2], pp. 47, 480-81. For, if
V denotes the interval [—e¢, €], where ¢ > 0, then

[*V) =0{f (V) :fe P}

is closed, convex and balanced and absorbs bounded sets in E. Since E
is infrabarrelled, f* ~ (V) is therefore a neighbourhood of the origin in E
and thus f* is continuous, as asserted.

(2) If one drops the hypothesis that £ be locally convex (the remaining
assumptions of Theorem 4.1 remaining intact), the substance of Re-
mark 3.3 (3) shows that one may still conclude that f*(B) is bounded
whenever B is a subset of E whose convex envelope in E is bounded.
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However, even assuming that E is first countable and complete, one
can in general no longer conclude that f* is bounded (i.e., that f*(4) is
bounded for every bounded subset 4 of E) whenever it is finite-valued.
Counter-examples are easily given in the case of the familiar spaces
E =[P (N) with pe (0, 1).

PART 2: APPLICATIONS TO MULTIPLIERS

§ 5. (p, q)-multipliers which are not measures

5.1 INTRODUCTION. In this section and the following one we will use
the substance of § 3 to prove several apparently new properties of (p, g)-
multipliers. Let G be a locally compact group [all topological groups will
be assumed to be Hausdorff and, in this section, will be multiplicatively
written with identity e¢]. Denote by L?(G), where 1 < p £ o0, the usual
Lebesgue space formed with a fixed left Haar measure 15 on G; and by
C/G) the space of continuous complex-valued functions on G with
compact supports.

For a € G, define the left translation operator 7, and the right translation
operator p, by

1,8(x) =g(@ 'x) and p,g(x) =g (xa™);

respectively. A linear operator 7 from C.(G) into LYG) is said to be a
(left) (p, q)-multiplier if and only if

(i) T is continuous from C.(G), equipped with the norm induced by
L7(G), into LYG); and

(i) T commutes with left translations, that is Tt, = 1,T for all a € G.

A right (p, @)-multiplier is defined in a similar manner with (ii) replaced
by

) Tp, = p, T forall ae G.

Let L;(G) denote the Banach space of (p, g)-multipliers equipped with the
customary norm, denoted by || - ||,.,, of continuous linear operators from
a subspace of L?(G) into LYG). That is, for each Te LYG), || T||,., is
the smallest real number K satisfying

[Tl = K|l ],
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for all ge C(G). [When p # oo it is more usual to define LXG) as the
space of unique continuous extensions to LP(G) of the (p, g)-multipliers.]
As an example, whenever k € C(G), the operator T, defined by

T,:glog*k

for all ge C.G), is (a) a (p,g)-multiplier for all (p,q) satisfying
1 <p =g =< w;and (b) a (p, g)-multiplier for all p, g € [1, 0] provided
G is compact. [When G is noncompact it is known that L% = {0} when-
ever p > g—see [1], § 3.4.3. We also remark that, unless a more explicit
reference is given, all the properties of the convolution operator between
functions and functions and between functions and measures used in the
sequel may be found in [2], §4.19.] For convenience, we will sometimes

write || k ||, , in place of || Ty ||,.,» Use will be made of the fact that

s = 1Tl = 1%
1l = Tl = 477

o

(5.1)

where A denotes the modular function of G, as defined in [7], (15.11) and
(15.15) and s’ is defined by 1/s-+1/s" = 1; cf. [1], Corollary 2.6.2 (i) and
Theorem 1.4.

5.2 DerINITIONS.  If T'€ LI(G), we say that:

(W) supp T < W, where W is a closed subset of G, if and only if
supp Tg < (supp g) . W for every g € C(G).

(i) T is a measure u if and only if Tg = g * u for every g € C(G).

[When k € C(G), supp T, < W if and only if supp £k = W; and in any
case T is the measure p = kig.]

5.3 ApjoiNT MULTIPLIERS. Let T e Li(G) and define an adjoint 77 of T
by
g*xT h(e) =Tg * h(e) (5.2)

for all g, he C(G). Sinde Tg * h(e) = [ Tg . hdig, where h(x) = h(x~ 1),
it is readily shown that 7' commutes with right translations and that it
may be extended to an operator from (L?)™ into (LF)Y. We also infer
from (5.2) that '
g*T"h=Tgx*h (5.3)
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everywhere on G, since 1,(Tg * h) = t,(7g) * h = T (t,g) * h. It is plain
from (5.3) that T is a measure y if and only if 7" is of the form A |- pu * h.

If we also assume that G is unimodular, so that the L? norms of g and g
are identical, two applications of the converse to Holder’s inequality will
show that

|7

oo = | Tl p.a (5.4)

where 1/p'+1/p = 1; thus T’ is a right (¢, p)-multiplier. Moreover
(cf. [1], Corollary 2.6.2 (ii))

Tl =1l = [Tl (5.5

5.4 RUDIN-SHAPIRO SEQUENCES. If U is a nonvoid open subset of G,
by a U-supported Rudin-Shapiro sequence (briefly: a U-RS-sequence) on G
we shall mean a sequence (,),.y Of elements of C.(G) with the following
properties: ‘

supp h, € U,
inf || A, ||, > 0, sup || 2, ||, < o,

\'s

(5.6)

lim, -, || Ay ||2.2 = O. |

We do not know conditions on G which are necessary and sufficient for
there to exist U-RS-sequences on G for a given U. When G is nondiscrete
Abelian, U-RS-sequences may be constructed on G in a fairly explicit
manner for every non-void open subset U of G (see Appendix A.2 below).
Sufficient conditions applying in the non-Abelian case are given in Appen-
dix A.3.

If (h,) is a U-RS-sequence, we may construct positive integers
my < my < ... so that

H hmn HZ,Z < n t27m,

Let k, = nhmn. It then follows from (5.6) that

I olle = Bn, 6)
| kalls = 4 (1 £ 5 = ), (5.8)
| a2, <277, (5.9)

where 4 and B are positive and independent of n.

L’Enseignement mathém.. t. XVI. fasc. 3-4. 1R
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5.5 When G is infinite compact Abelian, Theorem 4.15 of [1] shows that
there exists an operator belonging to L!(G) for every p € (1, o] and every
q €[1, ) and which is not a measure. [Given an infinite Sidon subset
of I', operators with this property are immediately constructible whether
G is Abelian or not; cf. [7], (37.22).] When G is noncompact locally
compact Abelian or infinite compact, it has recently been shown that there
exists an operator belonging to L)(G) for every p € (1, co) which is not a
bounded measure. [See [4] and [9]; the proof contained in [9] is con-
structive to some extent. See also [17].] We aim to show in 5.7 below that,
if U is a relatively compact open subset of G, and if we are able to construct
a U-RS-sequence on G, then we can construct an operator T € ) {L%(G):
1 < p<q =<0} such that supp 7"< U and T is not a measure. (If G is
also unimodular, an analogous result holds for right (p, ¢)-multipliers.)

The inequality p > 1, along with the inequality ¢ < oo if G is uni-
modular, is essential for the existence of such a T since every member of
L{(G) is of the form g |— g * u, where u is a bounded measure if g = 1
or pe LYG)if 1< g = oo (see [1], Corollary 2.6.2), and since L{(G) = L7(G)
if G 1s unimodular (see (5.4) above). When G is non-compact, the inequality
p = gis also essential sincein this case L}(G) = {0} whenever p > ¢ (see [1],
§ 3.4.3). Concerning non-unimodular groups, see 5.8 below.

5.6 LeMMA. Let k£ be a continuous function supported by a
relatively compact open subset U of G, and let ¢ = ¢(U) > 0 denote
inf {4(x)"' : xe U}, where 4 is the modular function for G. Then
functions u, ve C,(G) with ||u* v||, <1 may be constructed so that

Iu*Tkv(e)l 2(0/2)Hk||1.

Proor. Let {0,} be an approximate identity on G comprised of non-
negative functions with compact supports and which each satisfy
g 9.dA¢ = 1. Since k =5, tends to k in L'(G), we may select v = J,
so that

v oy 3. v
oY [[o = [l &=V [[e = 2| &[] (5.10)

Define a compactly supported function g on G by g(x) — v k(x)/
| v * k(x)| if v*k(x) # 0, and g(x) =0 otherwise. Letu,=d,* g .
Then u, € C(G) and, since u, (v * k)™ tends to g (v * k) in L*(G), we
may select o« so that
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3. PR
| Joulvx k) dig| = 2|12 0 %) digl (6D

Putting # = u,, we then have from (5.10) and (5.11)
Iu* TkV(e)l = HGu(V * k)vd/{G'

3
Zzlfcg(v*k)vdicl
3 I
= o= = ]l
= (¢/2) || k||
Moreover, |[u*v||, =V * #]|w < |V [|4]] % ||« <1, as required.

5.7 TaeoreM. (1) Let (h,) be a U-RS-sequence on a locally compact
group G, where U is a relatively compact open subset of G, and let (k,),en
be defined as in 5.4. A continuum of sequences (w,) €L (N) may be
constructed for which the series

2nen @n T (5.12)

converges normally in LI(G) for every pair (p, q) satisfying 1l <p <g< o
to a unique operator, T say, such that

(i) supp T < U, and
(i1) 7 is not a measure.

(2) With the further condition that G is unimodular, the theorem
remains valid if we replace throughout left multipliers and their related
concepts by right multipliers and their correspondingly related concepts.

Proor. (1) For each ne N, Lemma 5.6 shows that we may select
and fix u,, v, € C.(G) such that

[ vl = 1,

w Ty 1@ 2 @) ]| k|

y (5.13)

where ¢ = inf {4(x)™' : x e U} > 0 does not depend on n.
We aim to apply 3.2, taking:

H = the space of linear maps from C,(G) into L} (G), the topology on
H being that of pointwise convergence;
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I={(pqg:1<p=q<o};
E,.o = LYXG) with its standard norm;

E = £

Jo i Tl | u, = Tv(e) |;

X, = Tkn‘

It is clear that 3.2 (1) holds and that f; is continuous (a fortiori bounded) on E.
By way of verification of 3.2 (i1)-(iv) we will show that

f* (Tkn) < oo for every ne N, (5.14)
lim,,_,ooTkn = 01n E, (5.15)
lim,,_,oof,,(Tkn) = 0. (5.16)

Regarding (5.14), we have
fm(Tkn) — ‘ Uy, *Tkn Vm(e) I = I um* Vin ¥ kn(e) I é ” um* Vi lloo”l\én Hl

which, by the first clause of (5.13), does not exceed || k, |- Hence
f*(T) £ k ||1, which is finite since k, € C(G).
As to (5.15), the Riesz-Thorin convexity theorem ([11], Volume II, p. 95)

1 1
shows that for (p, q) € I satisfying - + -~ = 1 one has
P 4

1% (5.17)

175, |

n

P = H Tk,, H 3,2 II Tk,,

where 1/p = a/2 + (1—-a)/1, 1/g = a/2 4 (1 —a)/s, so that a = 2/p’ € (0, 1]
and se[l, o0o]. On combining the first clause of (5.1), (5.8), (5.9) and
(5.17), we see that

lim, . || Ty [p.g = O (5.18)

for every pair (p, q) € I satisfying 1/p 4+ 1/g = 1. 1f, on the other hand,
(p,q)el and 1/p + 1/g < 1, a similar argument gives

1 Te oa = 1 T, 11502 11 T, 1] 5.5 (5.19)

where 1/p = /2 + (1—a)/s and 1/q = «/2, so that « = 2/qe (0, 1) and
se (1, 00]. On combining the second clause of (5.1), (5.8), (5.9) and the
fact that A4 is bounded away from zero on U, (5.18) appears once more.
The verification of (5.15) is thus complete.
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The definition of f, combines with (5.7) and (5.13) to yield (5.16).

Appeal to 3.2 provides a construction for a continuum of sequences
(w,) € IL(N) for each of which the series (5.12) converges normally in E
to a sum 7 satisfying

f*T) = . (5.20)
This entails that, for every (p,q)el, TeL%(G) and the series (5.12) is
normally convergent in L!(G) to the sum 7. Since supp T, ke S U for

every n, it is simple to verify that sup T < U. It remains to show that 7
is not a measure. However, were T to be the measure y, it would be the
case that supp p < U and so, using the first clause of (5.7), that

SAT) = | uy = Tv(e) | = [uy * v, * ple) |
= | fg (, * v,)" 4™ 'du|
éjGA—ldlﬂl-

Since u has a compact support, this inequality would lead to a contradiction
of (5.20). Thus T cannot be a measure.

(2) Finally, when G is unimodular, everything remains valid when right
multipliers replace left multipliers throughout: this can be seen by either
repeating the entire argument ab initio, or by deriving it from the result
already obtained by making use of the properties of the adjoint discussed
in 5.3.

5.8 THE NON-UNIMODULAR CASE. (i) If G is non-unimodular, there can
be no full analogue of Theorem 5.7 applying to right multipliers. This is
so because in this case there exist no non-trivial right (p, g)-multipliers
when p # gq.

To see this, suppose that T is a right (p, g¢)-multiplier and that p # gq.
For fe C(G) and a € G we then have

[P Tflls = N Toaflle = (I Tllpall pas 1l = 1 T1],.0 4@ " [ 711,

and

| pa TS|l = d@"* || Tf]],
Hence

17S]le = 4@ [ T {0 | 711,

Since G is non-unimodular and p # ¢,
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inf, ¢ A(a)*/?~11 = 0,
and we infer that 7 = 0.

(i) In spite of (i) immediately above, there is a partial analogue taking
the following form.

Assume that there exists a sequence (h,) satisfying (5.6), where now
|| 2, ||2.2 is defined to mean

sup { || b, * f|2 : fe CLG), || f]]. £ 1}.

Then modification of the proof of Theorem 5.7 will lead to the construction
of operators 7" which are right multipliers of type (p, p) for every p € (1, ),
have supports contained in U, and are not of the form f|— u * f for any
measure f.

§ 6. (p, q)-multipliers whose transforms are not measures

6.1 INTRODUCTION. Throughout this section we suppose that G is a
locally compact Abelian (= LCA) group with dual group I', both groups
being additively written. We begin by slightly modifying the form of the
definition of (p, g)-multipliers, so rendering it possible to make certain
statements about their Fourier transforms without attempting a general
definition of such transforms. To this end, let F denote the set of functions
on G which belong to (1 {L?(G) : 1 < p < oo} and which possess Fourier
transforms with compact supports, and denote by LI(G) the set of contin-
uous linear operators from F, equipped with the LP(G)-norm, into L4(G)
which commute with translations. As before, equip LI(G) with the
(L*(G), LYG)) operator norm. It is easy to specify a natural isometry
between L%(G) as defined above and L7(G) as defined in § 5, and so we
speak of the elements of L1(G) as (p, g)-multipliers on G.

When T is a (p, g)-multiplier in this sense, we say that its Fourier

A
transform T is a measure p if and only if there exists a measure p on I’
such that

h#Tg (0) = fr hgdy 6.1)

for all g, h € F, where u denotes the Fourier transform of u. Similarly,

if Q is an open subset of I', we shall write 7= p on Q if and only if (6.1)
holds for all g, h € F such that supp§ c Q. If X is a closed subset of I',

we shall write supp T = 2 if and only if 7 = 0 on I'/2.




— 273 —

1t is simple to verify that, if KeF and Ty is the mapping
g|>g*K=K=g, then TyeL? whenever 1 <p < ¢ < oo. (In fact,
K *gll <[ K], llg]l, and || K*g]], < [[K]: ]| £]], and the con-
vexity of the function 7 |- log||K*g]||.-1, or an appeal to the closed
graph theorem, does the rest.)) Furthermore, T « 1s the measure K/lr,
where 1, is the Haar measure of I' normalised so that the L*(4;)-norm of

u is equal to || u ||, for every u e LX(G).

6.2 It has been shown by Gaudry ([5], Theorem 3.1) that, if G is non-
compact LCA and 1 < p <2 < g £ oo, there exist operators 7 € LI(G)

such that ]A’ is not a measure. In 6.3 and its proof we shall indicate how to
construct operators 7' which belong to LI(G) for every palr (p, q) satisfying

1 <p<2<g £ o and which are such that supp T is contained In a

compact subset of I and a“is not a measure. The precise statement of
6.3 requires some prefatory remarks.

Let G be a noncompact LCA group and Q2 a relatively compact open
subset of the dual group I'. Since I' is nondiscrete LCA, an Q-RS-
sequence (4,) on I' may be constructed in such a way that the inverse
Fourier transform of A, belongs to L'(G) for every n; see Appendix A.2.
Assuming this to have been done, choose positive integers m; < m, < ...
and define k, = nhmn exactly as in 5.4, so that (5.7)-(5.9) remain intact

(but with I', rather than G, as the underlying group). We now consider
the functions K, on G, K, being defined to be the inverse Fourier transform
of k,.

It is plain that every K, belongs to F. Moreover, an application of
Holder’s inequality yields

1Kl < 1 I3 K2 > 2 62)

By Parseval’s formula and (5.8),

2 = Hkn HZ é A%n;

also, since G is LCA, (5.9) leads to

o H Tkn H2,2 é 270
Inserting these last two estimates into (6.2), we obtain

I

s mn(1=209y (5% 7). (6.3)
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We shall need to note also that a construction, similar to that appearing
in the proof of Lemma 5.6, shows that for each n € N we may select and
fix u,, v, € F such that

| 4w Vulle =1 (6.4)
and

| §rttn Vo Ky dig | 2 3| K, || = 4| &a ||1 = 3B, (6.5)

the last link in this chain of inequalities stemming from (5.7).

6.3 THEOREM. Let G be a noncompact LCA group, Q a relatively
compact open subset of the dual group I'.  Suppose the function K, (n € N)
to be defined as in 6.2. A continuum of sequences (w,) € /3(N) may be
constructed, for each of which the series

ZneN @, TK n (66)

converges normally in LY(G) for every pair (p, g) satisfying 1 S p <2<y
< o0, the sum T of the series (6.6) satisfying the conditions

D) TeN{LyG):1 2p<2<qg= w};
Gi) supp T < Q: and

A
(ii1) T is not a measure.

Proor. Since G is Abelian, (5.4) shows that L¥(G) = L?(G) and
Il “ 5. =l * ll&.p~ Accordingly, we may and will restrict attention to
those pairs (p,q) such that 1 < p<2<g <o and 1/p+ 1/g =1;
denote by I the set of such pairs.

We propose to appeal to Corollary 3.2, taking therein

H = the space of linear maps from F into L;,.(G) with the topology of
pointwise convergence;

I  as defined immediately above;
Ep.q) = Ly(G) for every‘(p, q)el;
E = the closed linear subspace of & generated by the TKn (ne N);

fo 1 T 1= |ty = Tv,0) |;

x,, - TKn.
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Regarding the hypotheses of Corollary 3.2, it is clear that 3.2 (1) is
satisfied. Also, for any T € E and any m € N, Holder’s inequality yields

Pl = tt g [ T Ml = 1]t o 1 T Ul 1] v (]

which, since u,, and v,, belong to F, shows that f,, is continuous (and there-
fore certainly bounded) on E.
Next, since (see the remarks at the end of 6.1 above) TKn is the measure

A

Knlr = knj.r,

1>

fm(TKn) = !jl‘z’?m /Gm kn dll‘[ § H knl

the inequality coming from (6.4). This makes it clear that f* (T Kn) 1S

finite for every n e N, so that 3.2 (ii) is satisfied.
Turning to 3.2 (iii), note first that by convexity (as in the proof of
(5.17)) we have '

1Tk, n.a = 1l T, 15,2 ] T, I 157 67)

where, since p < 2 < ¢, we have « < 1 and s > 2. Now, by the case
s = oo of (5.8),

| Tk, |22 = [[ K[l = [[ k]| £ .
Using this in combination with (6.3) and (6.7), it appears that

| T, |5, = 0 (nn> 705270,
where f = (1—0a) (1—2/s) is positive, and so
lim, , TKn = 0 in E,

which is more than enough to verify 3.2 (iii).
As for 3.2 (iv), the fact that T K = K,Ar combines with (6.5) to yield

A AN

fn (TKn) = le’ Uy VnKn dﬂ’l’l Z_ %Bna

which confirms 3.2 (iv).

An appeal to Corollary 3.2 is thus justified and assures one of the
existence of a continuum of sequences (w,) € /% (N) for each of which the
series (6.6) converges normally to a (unique) sum 7 in E which satisfies

S*(T) = oo. (6.8)
From this it is evident that (i) is satisfied, and that, for every pair (», 9
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satisfying' 1 < p <2 < g £ o0, the series (6.6) converges normally in
L%(G) to T. Next, T is the limit in E of

. F
Sr - Zn=1 a)n TKn

as r — oo and, since it is plain that supp S, = Q for every r, (ii) is easily

derived. Finally, if T were a measure u, it would necessarily be the case
that supp u = Q and so, for every n € N, one would have by (6.1) and (6.4)

So (@) = | % T9,(0) | = | [ty S i |
| 1] (Q),

which is finite since Q is relatively compact. However, this plainly would
entail f* (T) < oo, in conflict with (6.8), so that 7" cannot be a measure and
(1i1) is verified. This completes the proof.

IA

6.4 REMARK. Theorem 6.3 was proved by Hérmander ([14], Theorem
1.9) for G = R" and any given pair (p, g) satisfying 1 <p <2 < g < o0,
this result being extended to a general noncompact LCA G by Gaudry [5).
The argument given by Hormander (loc. cit. Theorem 1.6 and the remark
immediately following) for the case G = R" can also be extended to a
general LCA G and shows that, if either ¢ < 2 or p = 2, then every

T e Li(G) is such that JA“ is a measure [and indeed a measure of the form
Wiy, where yelLl (I if ¢ <2 and YyeLl (I if p =2, and so
Y e L. (') in either case ]. Thus the hypotheses made in Theorem 6.3
about p and ¢ are necessary for the validity of the conclusion.

PART 3: APPLICATIONS TO FOURIER SERIES

§ 7. Applications to divergence of Fourier series.
7.1 Throughout §§ 7-10, G will denote an infinite Hausdorff compact
Abelian group with character group I', and A; the Haar measure on G,

normalised so that 1;(G) =1. For any fe L*(G), f will denote the Fourier
transform of f; for any finite subset 4 of I,

S,f = Y faw (7.1)

yed

is the A-partial sum of the Fourier series of f; and sp (f) will stand for
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the spectrum of f; i.e., for the support supp f = {ye I : f(y) # 0} of f.
The term “trigonometric polynomial” will frequently be abbreviated to
“t.p.”. In addition, @ will denote the largest torsion subgroup of I
([7], (A.4)), and 7 the natural map of I" onto I'/d. If A denotes a subset
of I', [4] will stand for the subgroup of I" generated by A4.

By a (convergence) grouping we shall mean a sequence & = (4;);.y =
(4)) of finite subsets 4; of I" such that

4; € 4;44 (je N);

U 4;,=1T, is a subgroup of I, said to be
ji=1

covered by 9 ; L (7.2)

for each je N, 4; = Q;+A;, where 4; is a
nonvoid finite subset of @ and Q; is a finite
subset of I" such that = [ Q; is 1-1.

J

[The first two conditions are natural enough in the context described in 7.3,
but the third is less so and may well be pointless.] The grouping & is said
to be of infinite type if and only if = (I') 1s infinite.

7.2 ExampPLES. (i) Let I, be any countable subgroup of I' such that
Iy @ = {0}; for example, I'y = {ny, :ne Z}, where y, € I'\®. Then
a grouping & covering I', results whenever 4; = {0} and 4; = Q; for
every je N, where (;);.y 1s any increasing sequence of finite subsets of
I', with union equal to I'j. This grouping is of infinite type if and. only
if I' is infinite.

(i) If G is connected, and if I' is any countable subgroup of I', then
([10], 2.5.6 (c), 8.1.2 (a) and (b) and 8.1.6) I', is an ordered group iso-
morphic to a discrete subgroup of R. Assuming I', # {0}, I, has a
smallest positive element y, and I'y = {ny, :ne Z}. A natural grouping
9 covering I'y is that in which 4; = {0} and

4; = Q; = {ny, :neZ,ln‘ <j}
for every j e N; this grouping is of infinite type.

7.3 A grouping & = (4,);.y Will be thought of as specifying one of
- the many possible ways in which one may interpret the convergence of
Fourier series of functions f on G satisfying sp (f) = I'y, namely, as

convergence of the corresponding sequence of partial sums (SAj S )jen-
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Indeed, the conditions (7.2) guarantee that lim S, f = f for all sufficiently
jow

regular such functions f. However, our concern rests with the possibility
of constructing continuous functions f on G satisfying

sp (f) € I, lim Re SAjf(O) = 0. (7.3)
Joroo
It will appear that the possibilities exhibit a fairly clear dichotomy,
depending largely upon whether G is or is not O-dimensional.
In the first place, it will emerge in 7.6 that the construction principle
of § 2, applied to the Banach space E = C (G) of continuous complex

valued functions on G [with norm || - || equal to the maximum modulus]
and to sequences of gauges of the type
f1- Re S, f(0) = Re [g Dy fdl, (7.4)
where D, stands for the “Dirichlet function”
Dy= 3.7 (7.5)
yed

shows that the problem hinges on the existence of groupings £ for which

p}: ”DAJ”1 :_[GIDAJ|d/1G"’OO- (7.6)

Accordingly, and in view of the fact ([7], (24.26)) that G is O-dimensional
if and only if I" coincides with @, it emerges that the dichotomy referred to
may be expressed in the following way.

7.4 Two cases arise, namely:

(i) G is not O-dimensional (i.e., @ # I'). Then (see Example 7.2 (1))
there exist groupings & = (4)) of infinite type; and, for any such grouping,
one can construct (fairly explicitly, as described in 7.6) continuous functions
f on G satisfying (7.3). In particular [cf. Example 7.2 (i)], if I’y is any
countably infinite subgroup of I' satisfying I'c n @ = {0}, and if (4));y
is any increasing sequence of finite subsets of I', with union I',, we can
construct a continuous f on G satisfying (7.3).

(i) G is O-dimensionat (i.e., @ = I'). Then there exists no grouping
of infinite type. However, given any countable subgroup I', of I, there
are groupings & = (4;) covering I'y, in which Q; = {0} and 4; = 4; is
a finite subgroup of I',, and for which

J— o
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uniformly on G for every continuous f satisfying sp (f) & I'o.
Case (i) will be dealt with in § 8, case (ii)in§ 9. The groupings described
in case (ii) prove to be exceptional in various ways; see 9.3.

7.5 REMARK. Perhaps it should be stressed here that, if I'y is any
infinite subgroup of I', there is no obstacle to constructing continuous
functions f such that sp (f) = I'y and finite subsets 4; = 4;,; of I'g

for which
lim SAjf(()) = 0.
J

[One has in fact only to construct a continuous f such that sp (f) = I'y

and ) | RG] ! = 00 it is then trivial that there exist finite subsets 4 of I',
vell

for which | S, £(0) | is arbitrarily large, so that we can choose a sequence
(4;) for which 4; = 4;.; and ] SAjf(O)l — oo with j.] However, the

sets 4; obtained this way will not [and, in view of 7.4 (ii), cannot] in general

be such that U 4; = I'y. For more details, see A.5.1 and A.5.2 of the
j=1
Appendix.

7.6 Suppose one is given a grouping & = (4,);.y covering I'y and
satisfying (7.6). As is described in § 10, one may construct polynomials
p..» in two indeterminates over the real field (v being a suitable fixed
integer not less than 36 and p; any positive number not less than || D, ||.,)

J

such that, for suitable unimodular complex numbers &;, the t.p.s

1A _
Q.i = éf <1_{—v> qu,v (DAjs DAj)
satisfy
| 01| £ 1, sp(0) =4 = I, 1 -
SAJ. 0;(0) = | DAj Q;dig isteal and = % p;. } :

In view of (7.2), (7.6) and (7.7), one may choose inductively a sequence
(Jwnen of positive integers so that

Sa, Q;,(0) is real and > n, 1

' (7.8)

N

jn <jn+la Sp (an) = FO-

Accordingly, the t.p.s



satisfy the conditions

sp (u,) < o, Y. || ua || < o0
n=1 (7.9)

S, u,(0) is real and > n.
J

n

At this point the construction in § 2 will yield integers 0 < n, < n, < ...
and specifiable sequences (y,) ,.y of positive numbers such that each function
of the form

o0
f=2 v,u,
p=1 P
is continuous and satisfies

sp(f) e I'y, limRe SAj f(0) = oo. (7.10)

N
p—= p

A fortiori, f satisfies (7.3).
We add here that, if the 4; are symmetric, the D, are real-valued,
J

and we may work throughout with real-valued functions, replacing
Re S, f by S, f everywhere.
J J

§ 8. Discussion of case (i) : G not O-dimensional

8.1 In this case @ # I', and we begin by considering a finite subset
of I' of the form

A=0Q1+ A (8.1)

where Q and A are finite subsets of I" such that = | Qisl-land g # A < &.
We aim to show that (for a suitable absolute constant £ > 0)

AR k(m) , 6.2

provided N = l Q , (the cardinal number of Q) is sufficiently large.

8.2 ProOOF OF (8.2). Introduce H as the annihilator in G of @ and
identify in the usual way the dual of A with I'/®. Likewise identify the
dual of K = G/H with @ ([7], (24.11)).
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We then have
| Dalli = Jol 3 71 de
ye

= [on Po@® [r] ¥ Y 0G+y) o x+y) | din(y),

e ¢peAd

the inner integral being viewed as a function of X = x4-H  Thus, writing
' 0 for = (§) and noting that ¢ (y) = 1 for p € 4 = @ and y € H, we obtain

| Dl = Jo/u 9Aen® [ | ez{:) o (0, )0 () | din(»), (8.3)

where

a (0, x) =0(x) Y ¢ (x).

¢eA

Now, since the dual of H (namely I'/®) is torsion-free ([7], (A.4)),
Theorem A of [8] shows that (for a suitable absolute constant k > 0) we
have

_ log N \* .
Jul T «(0,200)|d10) 2 k(@%%v) min | (6, ) |
B log N \* _
= k(m) | ¢§1 ¢ (%) ], (8.4)

since | 6 (x) | = 1 and ¢ (x) depends only X. By (8.3) and (8.4),

log N % N N
H D, H1 o k(w) }j’G/Hl ¢§1 ¢ (%) | dflc/n(x)- | (85)

Since A4 # @, the remaining integral is not less than the maximum modulus

of the Fourier transform of the function X |- ) ¢ (X), i.e., is not less
ded

than unity. Thus, (8.2) follows from (8.5).

8.3 Proor or 7.4 (i). The conclusions stated in case (i) of 7.4 are
now almost immediate. If & = (4,);,y is a grouping of infinite type
covering I'y, | m (4;) | > co and so, since 4; = @, | n(Q;)| > 0. Then
(8.2) shows that (7.6) is satisfied, and it remains only to refer to 7.6.

8.4 SUPPLEMENTARY REMARKS. The fact that, when G is not 0-dimen-
sional, (7.6) holds for suitable subgroups I’y of I' and suitable groupings
9 = (4;);y covering I'y can be derived without appeal to Theorem A
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of [8]. To do this, it suffices to take y, e I'\ @ (k = 1, 2, ..., m) such that
the family (y,); <x<n is independent (see [7], (A.10)), define

Fo == {Z’Z=1 nkyk InkEZ fOI' k = 1, 2, ceey m},
and make use of the formula

jG F@i ), oo P (X)dys(x)
= 2n) ™ (o*... ¢ F (e, ..., *m)dt, ... dt,, (8.6)

valid for every Fe C (T™), where T denotes the circle group. (Recall that
Y %=1 ni v denotes the character x |— y,(x)"1 ... 7,,(x)"m of G.) It then
appears that (7.6) holds when one takes

A]: {Zn}z=1 nk’yk:]nk’ é I’j’k fOI‘ k — 1,2, ...,177},

where the r; , are positive integers satisfying r; , < r; 4 and lim;, , r;
= 0. Moreover, when m = 1, the Cohen-Davenport result (essentially
Theorem A of [8] for the case G == T) shows that (7.6) holds for every
grouping & covering I',.

The verification of (8.6) is simple. First note that, if G and G’ are
compact groups, and if ¢ is a continuous homomorphism of G into G/,
then

[ (Fo ¢)dig = | Fdhye, (8.7)

for every FeC(G'). (This is a consequence of the fact that
F |- ¢ (Fo ¢)dAg is invariant under translation by elements of ¢ (G),
combined with the uniqueness of the normalised Haar measure on a
compact group.) Taking G'=T" and ¢ :x|— (y{ (%), ..., V., (x)), the
stated conditions on the vy, are just adequate to ensure that the annihilator
in Z™ (identified in the canonical fashion with the dual of 7™) of ¢ (G) is
{0, ..., 0)} and so ([7], (24.10)) that ¢ (G) = T™. Accordingly, (8.6) appears
as a special case of (8.7).

It is perhaps worth indicating that special cases of (8.7) can be exploited
in other ways. For example, suppose more generally that x is an arbitrary
nonvoid set and that (y,),.,. 18 a finite or infinite independent family of
elements of I'\®. Denote by I, the subgroup of I' generated by
{ye :kex). Taking G'=1T" and ¢ : x |- (7(X))rer» ONE may use (8.7)
in a similar fashion to show that there is an isometric isomorphism
F <« Fo ¢ = fbetween LP(T*) (or C(T™)) and the subspace of LP(G) (or
C (G)) formed of those fe LP(G) or C (G)) such that sp(f) < I'y. More-
over, if one identifies in the canonical fashion the dual of 7" with the weak

i i ekl
-]
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* . . A A ,
direct product Z* , the said isomorphism is such that F = f o ¢, where

¢’ is the i1somorphism of Z<" onto I'y defined by (7,) = D kex i Vi

One consequence of this may be expressed roughly as follows: If the
compact Abelian group G is such that I'\ @ contains an independent family
of (finite or infinite) cardinality m, then Fourier series on G behave, in
respect of convergence or summability, no better than do Fourier series
on 7™,

Another consequence is that, if A4 is a subset of I',, then 4 is a Sidon
(or A(p)) subset of I' if and only if ¢’ ~!(4) is a Sidon (or A(p)) subset

%
of Z* .

8.5 FURTHER RESULTS. Theorem A of [8] implies something stronger
than (8.2), namely: if w is any complex-valued function on I' such that

o+ =w@l) (Gel,ped), (8.8)
so that w can be regarded as a function on I'/®, and if we write
Dy = T omnsif= 3 om0, (8.9)
then, for 4 = Q 4 A as in (8.1), we have
| D2 1] gk(_l_"gN T min | o () | (8.10)
loglog N/ .0

provided N = | Q| is sufficiently large.

So, if we can arrange for Q = Q; to vary in such a way that the right-
hand side of (8.10) tends to infinity with j, the substance of 7.6 will lead to
a continuous f satisfying sp (/) = I', and

lim Re S5./(0) = co. (8.11)
J—o
Taking the most familiar case, in which G =7, I' = Z and & = {0},

and supposing 4 = Q to range over a sequence (4 ;) of finite subsets of Z
such that, if N; = | 4,/

_ log N; \*
lim (1——!%—’—> min | o (n) | = oo,
i \loglog N;

neAj

the construction will lead to a continuous f on 7 such that

lim Re S5 £ (0) = co.
J
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In particular, taking 4; = {ne Z :2/ <n <2’*'} it can be arranged
that

A
y + f (n)
nez (log 2+ |n[)*
diverges for any preassigned distribution of signs + and any preassigned
a0 < .

Of course, much stronger results are derivable by using random (and

unspecifiable!) changes of sign, but there seems little hope of making this
even remotely constructive.

§ 9. Discussion of case (ii) : G O-dimensional

9.1 In this case there is ([7], (7.7)) a base of neighbourhoods of zero
in G formed of compact open subgroups W. For each such W the
annihilator 4 = W° in I" of W is a finite subgroup of I'. Define

ky = Ag(W) ™! X characteristic function of W. (9.1)

Then ky, is continuous, ky = 0, g ky dAg = 1. The transform ky, of ky
is plainly equal to unity on 4. On the other hand, since W is a subgroup,
we have for ae W and ye I’

kw ) = [6 Ky ()7 () dg () = [6 ey (x-+a) 7 (%) dlg ()
= {6 kyw )y 0 —a) dig ()

— 7 (@ ky ),

which shows that gw(y) =0 if yeI'\A. Thus ky is the characteristic
function of 4, and so

kW S DW°' (92)

By (9.1) and (9.2), a routine argument shows that, if 1 < p < oo and
feL?(G), then

. f=1im Sy.f 9.3)

W

in LP(G); and that (9.3) holds uniformly for any continuous f.

9.2 Proor oF 7.4 (i)). If I', is any countably infinite subgroup of I
we can choose a sequence W; of compact open subgroups of G such that
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W,i1 € W;and I'y < ~U1 W, where W is a finite subgroup of I' and
j=

W< W;yy. The 4; =W, n T, satisfy (7.2) and, from (9.3),
f=1lms, f 9.4)

J
uniformly for any continuous f with sp(f) < I',. This verifies the
statements made in 7.4 (i1).

9.3 By using the results in [3], more can be said in case (i1) of 7.4;
cf. [3], Theorem (2.9) and Example (4.8).

Let fe LY(G) and let I', be any countable subgroup of I' containing
sp (f). Choose the W; as in 9.2. Then, apart from the fact that (W}) is
not in general a base at 0 in G (they can be chosen to be so if and only if
G 1s first countable), (W;) is an open-compact D”’-sequence ([3], p. 188).
The proof of Theorem (2.5) of [3] is easily modified to show that

f@) = lim Sy f () ©.5)

Jj— oo

holds for almost all xe G. Moreover, Theorem (2.7) of [3] applies to
show that the majorant function

S*f () = sup | Swsf ()| (9.6)
satisfies the estimates
1
S fll, =2 (@=-D"Y"||7]l, (1<p<owo) L (9.7)
S*flly £ 2+ 2§6|f]log* | f] de (9.8)
S*fll, £20-p)" || f]|, ©O<p<1). (9.9)

In particular, the convergence in (9.5) is dominated whenever

| f]log™ | f] e L* (G).

A more immediate consequence of (9.1) and (9.2) is a strong version
of localisability of the convergence of Fourier series: if f'e L*(G) vanishes
a.e. on some neighbourhood of x, e G, we can choose the W; so that
S4;f (%) = 0O for every sufficiently large j. [A suitable choice of W; may
be made once for all, independent of £, if G is first countable.] Nothing
similar is true for general G; see, for example, [11], Vol. IT, pp. 304-305.
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§ 10. Concerning the polynomials Q;.

There is no difficulty in making fairly explicit the construction of
t.p.s Q; of the type employed in 7.6.
For p > 0, t = 0O define

1 if ¢t < p,
!
hp(t)=<'2(1——§~> ifp £t £ 2p, (10.1)
P
0 if t = 2p
For all complex z define
jO if z =0,
o (@ = L _ (10.2)
“zl zhp([zl) if z # 0.
Write
E,(z) =n"'nexp(—n [ z Iz,
s 1)1 (10.3)

Pan@=n"tn L sz Y

Let p denote Lebesgue measure on C (identified with R? in the canonical
fashion).
It is then routine to verify that

1B follo < /]l =1,
lim E, * f, = f,

n— o0

(10.4)

uniformly on any compact set omitting 0. From this it follows that to
every p > 0 and every positive integer v correspond positive integers
i (p,v), k (p,v) such that

IA
=

1 1
IZI Z— *P;;(Z) —fOI’—_S_lZI
: v v
, (10.5)
|fo*Prz@| =14 - forl2|<p

Now

o *Prz(2) = q,,, (2, 2), (10.6)
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where

ke (—a(p, v)Y

dp,v (X, Y)=mn" n(p, V) Z 7 Z Z (lj) ('{1) xty™

=0 m=0

(=D == £, (0 du (O

k(p,v)
=y C,,(,mX" Y™
I,m=0

It is easily verifiable that the C, , (/, m) are real-valued.
If 0 is a bounded measurable function on G and

Qpy = 4py 6,0), 0 2| 0|
we have from (10.5)

'dl’—"

1
< - whenever | 6| =
v

\wrlé—g;,v

o 1
| 0,.,| £ 1+ - everywhere on G.
v

If 0 is a t.p., then Q,, is a t.p. and

sp (Q,,) < [sp (O]
From (10.9) we obtain

v™ 1| 6| whenever |0 | >1,
)

lIHI—OQ;,v < |

(2—!— ) | 6| everywhere,

whence it follows that, if 6 # 0,

1§60 @, dAG| = (1—v™Y) || 0]ls —v Q@+ vY)
> (1-2v"H]|6]|,

provided v = 91| 6 |1 2.

(10.7)

(10.8)

(10.9)

(10.10)

(10.11)

Taking 0 = Dy, and p; 2 || Dy, ||, the trigonometric polynomials

, AR 1\ _

(10.12)
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are then see‘n from (10.9), (10.10) and (10.11) to satisfy
ol =1, 7
sp (Q)) < [4)], : (10.13)
[y Dy 05 dia| = =379 D,

provided v is chosen = 9 || Dy, |7*. In view of (7.6), we may choose
the integer v = max; (36,9 || DA [1"). Then (10.13) shows that there
are unimodular complex numbers é such that the Q; = ¢; Q; ; satisfy (7.7).

APPENDIX

Rudin-Shapiro sequences

A.1 NOTATIONS AND DEFINITIONS. As hitherto, all topological groups G
are assumed to be Hausdorff; and, for any locally compact group G, Ag
will denote a selected left Haar measure, with respect to which the Lebesgue
spaces LP(G) are to be formed. C(G) denotes the set of complex-valued
continuous functions on G having compact supports.

If X and Y are topological groups, Hom (X, Y) denotes the set of
continuous homomorphisms of X into Y.

Suppose henceforth G to be locally compact. As in 5.1, if ke C(G),
T, will denote the convolution operator

fl=f*k

with domain C,(G) and range in C,(G); and || k ||,,,, will denote the (p, g)-
norm of this operator, i.e., the smallest real number m = 0 such that

lfxkll, =m|fll, (feCLG)).

It is well-known that, if G is Abelian, || k||,,, is equal to
H k ”oo - SupyeF l k (Y) |9

where I' is the character group of G and 2 is the Fourier transform of k.
(Something similar is true whenever G is compact, but we shall not use
this.)

U-RS-sequences on G are as defined in 5.4.
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In A.2-A.4 we are concerned with conditions on G sufficient to ensure
the possibility of constructing U-RS-sequences on G for certain choices
of U. In A.5 we use Rudin-Shapiro sequences on infinite compact Abelian
groups to support statements made in 7.5.

A.2 THE ABELIAN CASE. If G is Abelian and nondiscrete, the methods
of § 2 of [5] show how to construct (reasonably explicitly) a U-RS-sequence
(h,) on G for any preassigned nonvoid open U = G; see also [7], (37.19.b).

In addition, we may assume that each /i\z,, is integrable on I, the character
group of G. [To see this, let ¥ be a compact neighbourhood of the origin
of G and let ¥ be a nonvoid subset of U such that V + W < U. Let {u;}
be an approximate identity on G comprised of functions in C,(G) with
supports.in ¥ and Fourier transforms in L'(I'). Finally, let (k,) be a
W-RS-sequence; then for each n € N we may select i, so that (k, *u; ) is a

U-RS-sequence with the further property that (k, * u,-n)A = l/g,, u ;. e LY(I),
as required.] We take this construction for granted (but see A.5 below)
and use it to show how to construct U-RS-sequences on certain non-
Abelian groups G. The basis of the extension is a simple technique of

passage from a quotient group to the original, the crucial step being
A.3.2 below.

A.3 THE NOT-NECESSARILY ABELIAN CASE.

A.3.1 Assume here that K is a compact normal subgroup of G. Let
Ag be normalised so that Ax(K) = 1; and let n : x |~ X denote the natural
mapping of G onto G/K.

If f'e C(G), the function f’ on G/K defined by

(%) = [gSf(xt) dig (1) (A.1)
belongs to C.(G/K); cf. [7], (15.21). If ge C(G/K), g o n e C(G) and
(gon) =g. (A.2)

If 7, denotes left-translation by amount a, it is verifiable that

(tof) =1z f’. From this it follows that the disposable factors in Ag and
Ak can be mutually adjusted so that

ijd’{G = jG/Kf, dAG/K (A.3)
for fe C(G). Using (A.3), a direct calculation confirms that
(fx(kom) =f"*k (A.4)

whenever f'e C(G) and k € C(G/K).
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Another consequence of (A.3) is that for 1 < p £

171l 2 11771l (A.5)
for every fe C.(G); and that for 0 < p < o
171l = 11771l (A.6)

for every fe C.(G;K), the set of fe C.(G) which are constant on cosets
modulo K.

A3.2 Let ke C(G/K). Then
leon|l,q = [kl (A7)

Proor. For fe C(G), f*(kon)e CG;K) and (A.6) gives

[/*Kom [y = || (f* &om) ||,
which by (A.4)

= fl*k”q
< 1A 111 & 1l5.a
< |11 11 5.0

the last step by (A.5). Whence (A.7).

A.3.3 If (h,) is a V-RS-sequence on G/K and U=n"*(¥), then (h,0n)
is a U-RS-sequence on G.

Proor. In view of A.3.2 it suffices to note that

supp (h,on) = =~ (supp h,)

cn (),
| Ao [ = [ Aa ||
| Bwom ]z = || A |2

the last two because of (A.6) and (A.2).

A.3.4 Suppose that K is a compact normal subgroup of G and that
one can construct V-RS-sequences on G/K for any given nonvoid open
V = G/K. Then one can construct U-RS-sequences on G for any given
open subset U of G which contains K.
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Proor. Apply A.3.3, taking a nonvoid open subset W of G such that
KW < U, and noting that ¥V = n(W) is then nonvoid and open in G/K
and that n~}(V) = KW < U.

A.3.5 Let 6(G) be the closure in G of the derived (= commutator)
subgroup of G, and suppose that §(G) is compact and nonopen in G.
Then one can construct U-RS-sequences on G for any given open subset U
of G containing §(G). (Note that, since 6(G) is a closed subgroup of G,
it is nonopen in G if and only if it has empty interior, or if and only if it
is locally null for 4;.)

Proor. This follows from A.2 and A.3.4 because:
0(G) is in any case a normal subgroup of G such that G/6(G) is LCA [see
[7], (5.22), (5.26), (23.8)]; and 6(G) is nonopen in G if and only if G/o(G)
is nondiscrete ([7], (5.21)).

A.3.6 The hypotheses of A.3.5 are satisfied in any one of the following
cases (all groups being assumed Hausdorff and locally compact):

(1) G = G{XG,, where 6(G;) and 4(G,) are compact and 6(G,) is
nonopen in G, (hence in particular if G = A4 X B, where A is nondiscrete
Abelian and 6(B) is compact);

(11) 6(G) is compact and there exists an open connected subset W of G
such that ee W & 6(G) (hence in particular if G is compact and connected
and 6(G) # G);

(ii1) 6(G) 1s compact and, for some Abelian 4, some ¢ € Hom (G, A)
and some connected open subset W of G, we have ee W and ¢ | W non-
constant (hence in particular if G is compact and connected and Hom (G, A)
1s nontrivial);

(iv) G = @(H), where ¢ € Hom (G, H) is such that Ker ¢ is locally
countable (that is, such that Ker ¢ intersects each compact set in a countable
set), and where 6(H) is compact and nonopen in H.

Proor. (i) It is evident that &(G) < 6(G,) x 6(G,), which shows
that 6(G) is compact and nonopen in G [if it were open,
o(G,) = Pre, (6(G;) X 6(G,)) would have interior points].

(i) Were 6(G) to be open in G, W would be a disjoint union of
Wné(G) and W n(G\(G)), each relatively open in W. Since
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eec Wn 5(G) connectedness of W would 1mp1y that W n (GYo(G)) =
1e., W < 6(G), a contradiction.

(ii1) Ker ¢ is a closed subgroup of G containing 6(G); since W & Ker o,
it follows that W & 6(G). Now use (ii).

(v) Clearly,
o(G) = ¢ (6(H)) = ¢ (6(H))

is compact. Suppose 5(G) were open in G. Then @(5(H)) has interior
points, and the same would be true of

¢~ (¢ (5(H))) = S 6(H),

where S = Ker ¢. So there would exist a compact neighbourhood V of
the identity in H such that
V < S6(H)
and so
V="V n (S6(H)).

But, if yeV n (S6(H)), y=sz for some seS and zed(H), hence
s=yz YeVS(H)™ !, and so se (Vo(H) ') n S, which is countable by
hypothesis, say {s, :ne N}. But then

ye U s, 6(H).

neN

Thus
V="Vn(SH) < U s, 5(H)
neN

and so, since Ah(0(H)) =0,
0 <Ay (V) = ) Ag(8(H)) =0,

neN

a contradiction.

A.3.7 REMARKS. (i) A.3.6 (iii) suffices to show that any finite-dimen-
sional unitary group U(n) satisfies the hypotheses of A.3.5. [For U(n) is
compact and connected (see [7], (7.15)); and we may apply A.3.6 (iii) with
A = T, the circle group, and ¢ = det.]

On the other hand, it is easy to see (cf. A.3.6 (i) and its proof) that if

G = [] G;, where the G; are compact and at least one of them satisfies
iel
the hypothesis of A.3.5, then G satisfies the said hypotheses.
So every product of unitary groups satisfies the hypotheses of A.3.5.
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(ii) The hypotheses of A.3.5 are also satisfied if G = G; ® G,, the
semidirect product of G, and G, (see [7], (2.6) and (6.20)), provided G is
compact and §(G,) is compact and nonopen in G, (hence in particular if
G = A ® B, where A is compact and B is nondiscrete and Abelian). In
fact, 6 (G) < G, X 8(G,) and the proof proceeds as for A.3.6 (i).

A.4 THE OPERATORS f |- k * f. Retaining the notations introduced
in A.3, it turns out that (cf. (A.4))

((kom)*f) =k=*f"" (A.8)

for every fe C(G) and k € C(G/K), where, for any function g with domain
a group X, g denotes the function x |- g(x~ ') with domain X. Asa con-
sequence, the results of A.3 have direct analogues for the operator f |- k * f,
provided G/K is unimodular, which is so if and only if G is unimodular.

A.5 CONCERNING 7.5.

A.5.1 Throughout A.5 we suppose G to be infinite compact Abelian.
Let I', be any infinite subsemigroup of the character group I' of G; 0 e I',,.
The construction described in § 2 of [5] may be employed to produce t.p.s
f, (me N) on G which, together with their spectra S,, satisfy the conditions:

So={0}, S, = Iy |S,|=2" |

B2? < ||, ||s £ 422 (1 £s=00),

[fillz2={[flle = 1,
J/”:,zqo on S,, 0 on I'\S,,

where 4 and B are positive absolute constants and ¢ is a function on I’
with Ran ¢ < {—1,0,1} and | @ (y) | = 1 if and only if y€ S,. (When
G = T, these f, are virtually the original Rudin-Shapiro t.p.s. In the
terminology adopted in 5.4 above the h, = 27"2f constitute a G-RS-
sequence on G.)

If we now choose «, € I" inductively so that, on writing F, = «, + S,,
we have

(A.9)

41 €Lg \ [(Fou ... 0 F) — 8,44,
then

| Eu| =15,

:Zn,anro,

_ (A.10)
F,0F, = if m # n,
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and the t.f).s
w, =2""20q,f (A.11)
satisfy the relations

H W “00 é A’ ﬁ’n - 2"?1/2 Dns
(A.12)
Ran ¢, = {—1,0,1}, | ¢, () | =1 ifandonlyif yekF,

From (A.10) and (A.12) it follows that at least one of the sets
A4, = ¢, (1)), B,=¢,*({—1}) has not fewer than 2"~! elements.
Define ¢, =1, C,=4, if |4,|=22""" and ¢ = -1, C,=B, if
| 4,] <2*7'. Then

Ew) () =27"2 if yeC, 1
| (A.13)

C,cF, l C,,| > 2" L
A.5.2 In terms of the construction given in A.5.1, it is possible to write

down any number of continuous functions f on G and sequences (4;) of
finite subsets of I'y such that

Aj = Aj’*- 1> }
sp (f) & Lo,
SAjf(O) is real and lim SAjf(O) = {0, (A.14)

Jj=®

|70 = oo;

vell

cf. the statements made in 7.5.

Indeed, if (c,),2, is a sequence of real numbers satisfying

¢, =0,) ¢, <00,y 2" ¢, = o0, (A.15)
n=0 n=0
and if )
4; = Cou ..U Cj, (A.16)
if suffices to take
= cyey W (A.17)
n=0

(A.14) being then a simple consequence of (A.12) and (A.13).
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However, it is a consequence of the choice of the y, and o, and of (A.12)
[on evaluating the Fourier series of w,at 0] that | |4, ]| — | B, || < 2%,
which implies that C, contains only about one half the elements of F,, so

that U 4; falls far short of exhausting I'y. In particular, (4;) is not a
j=1
convergence grouping of the sort described in § 7.

A.5.3 Two further consequences of the construction in A.5.1 are
perhaps worth mentioning in passing.

(i) For any complex-valued sequence (c,)}, =, such that

°,§’=1[c,,[ < 00, (A.18)
the formula
g :Zfz‘l Cn wn (AIQ)

yields a continuous function g € C(G). It is easy to specify choices of (c,)
in accord with (A.18), and of nonnegative functions # on I' such that

lim, ., 7 () = O, (A.20)
for which

Yoer | 8 ) |2 721 = oo (A.21)

2

One might, for example, take c,=n"? and #n(y) = 6n"'logn for

yeF,(n=1,2,..)and n(y) = 0 for ye I'\F, where F= U F,.

n=1
This is an analogue of a well-known result of Banach for the case
G = T; it provides numerous reasonably constructive counter-examples

to conjectural improvements of the Hausdorff-Young theorem.

(i) Take (¢,), n and g as in (i) immediately above. Let  be any
nonnegative function on I' which is bounded away from zero on F. Let
further 0 be any complex-valued function on I' such that

O =vM|gW[' ™Y .sgng(y) for yeF.  (A22)
Then (A.21), (A.22) and Bochner’s theorem combine to show that @ is

not a Fourier-Stieltjes transform. Yet, if Y is bounded, and if we define
0(y) = 0 for ye I'\' F, (A.20) and the fact that g € C(G) ensure that

0eN,., (I (A.23)
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We thus obtain explicit examples of functions 6 satisfying (A.23) which
are not Fourier-Stieltjes transforms.

Note that, if every ¢, is real and nonzero, an (unbounded) i can be
chosen so as to make Ran § = {—1, 1}; this yields explicit examples of
+ 1-valued functions 8 which are not Fourier-Stieltjes transforms. (These

are, of course, also obtainable by starting with functions sgn lAz, where
he C(G), h is real-valued and h ¢/ (I).)
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