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déterminer explicitement une telle famille: on sait en effet (voir par exemple
[10], p. 70) que toute classe d’idéaux de 4 contient un idéal entier a tel que

47 n! —
Na £ Mg = (=) .— /141,

. n
4 désignant le discriminant de K. On voit donc qu’on peut prendre pour
D T'ensemble des idéaux premiers p de A tels que Np < M. Bien entendu,
Iensemble D ainsi construit est en général « beaucoup trop grand »: mais
il est clair que la détermination d’un D « minimal » équivaut pratiquement
a la détermination de la structure du groupe des classes de A, ce qui est
une autre affaire.

S. UN EXEMPLE EXPLICITE

Montrons pour terminer, sur un exemple numérique simple, que les
méthodes précédentes ménent a des résultats tout & fait explicites. Nous

considérons le corps quadratique imaginaire K = Q (\/—~23), pour lequel
n=2r=0r,=1,a=1r=0, W= {1, —1}. Posons:

. —-1+\/——23;

2

le polyndme minimal de o sur Q est X* 4 X 4 6, et on a 4 = Z [q«],
4 (le discriminant) = —23. De 13

"2 nl!

4 2./23
(;) /4] =——\é_s4,

et le groupe des classes de A est engendré par les classes des facteurs pre-
miers de 2 et de 3 dans 4. Mais (pour p = 2,3) on a

AlpA = Z[o] | pZ [¢] ~ Z [X]/ (p, X*+ X+-6)
d’ou, puisque 6 = 0 (mod p),
AlpAd ~ Z[X]/(p, X*+X) ~F,[X]/ (X (X+1))

et finalement A/p4d ~ F, X F,. Ainsi, 2 et 3 sont décomposés dans A4,
et le calcul ci-dessus montre plus précisément qu’on peut écrire

2) =pp, ()= qq,

n

avec
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p=Q2, 0, p=(2 aitl),
et

a=@G,2, g=@Gatl).

On vérifie sans peine que pqg = («), pq = (a+1) et p*> = («+2). En
revanche, p? n’est pas principal: car Np? = 4, mais p? # (2), alors que
2 et —2 sont les seuls entiers de K ayant pour norme 4.

Il résulte de tout cecique p ~p~ L, g~ q L g~q 1 ~p, > ~ (D),
mais qu'on n’a pas p> ~ (1) (ni a fortiori p ~ (1)): le groupe des classes
de A est donc cyclique d’ordre 3, engendré par la classe de p = (2, «).

Soit maintenant p, 'unique place archimédienne de K et posons

D= {p}, S= {p. P}

Alors, avec les notations du §1, on a d=1, s=2, p,=9p, n; =3,
x; =t =a + 2. Et on peut affirmer:

L’anneau Ag est formé des éléments de K du type (x+yo) [ (x+2)"
(m=0; x, yeZ); Ag est un anneau principal: hg = 1; enfin, le groupe Ug
est formé des éléments du type =+ (x-+2)" (meZ) (le fait que o -+ 2 soit
une « unité fondamentale » pour Ag tient a ce que N (x+2) = 8 et que
ni 2 ni 4 ne sont normes de S-unités de K).
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