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M désignant la matrice de L (w1), L (ur) dans la base canonique de Ra,

et les Xj désignant les quantités log | Xj \j. Par construction des xj9 on a

Â1 ^ 0,... Âd ^ 0; d'après le théorème (1), M est de rang r a — 1 : la
matrice ci-dessus est donc de rang r + d s — 1, et aussi le groupe
A (G), ce qui prouve (d).

(b), (c) et (d) montrent que a (Us) est un réseau de rang exactement
s — 1, et le théorème (3) est démontré.

4. Démonstration du théorème 4

La partie (v) de la proposition 1 du §2 montre que l'application
a |-> aAs définit un homomorphisme surjectif cp du groupe des idéaux
de A sur le groupe des idéaux de As; comme cp transforme évidemment

tout idéal principal en un idéal principal, cp donne lieu par passage au

quotient à un homomorphisme surjectif du groupe des classes d'idéaux
de A sur le groupe des classes d'idéaux de As; comme le premier groupe
est fini, d'ordre h (théorème (2)), le second est lui aussi fini, d'ordre hs

diviseur de /z, d'où la première assertion du théorème (4).
Le même raisonnement prouve d'ailleurs plus généralement que si

S a S\ alors hs> divise hs\ pour achever de démontrer le théorème (4),

il suffit donc de prouver ceci : il existe un ensemble S tel que hs 1.

Or, soient al5 a2, cq des idéaux entiers de A représentant les h classes

d'idéaux de A, et soit D {p1? p2, yd} l'ensemble des idéaux premiers
de A qui divisent l'un au moins des cq; enfin, soit S l'ensemble formé des

places archimédiennes de K et des places discrètes appartenant à D ; alors,

hs 1 : en effet, soit b un idéal entier de As ; il existe un idéal entier a de

A tel que b aAs (prop. 1, (v)); d'autre part, il existe y g K* et i tels que
ci yai; enfin, cq se décompose en produit de facteurs premiers appartenant

tous à D :

a; pF P22.» V7-

D'où immédiatement (prop. 1, (iv))

b yAs;

b, idéal entier quelconque de As, est principal, et hs 1. Le théorème (4)

est entièrement démontré.

Notons qu'il suffit, dans la démonstration ci-dessus, de prendre pour D

une famille finie d'idéaux premiers dont les classes forment un système

générateur du groupe des classes de A. Dans la pratique, il est facile de
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déterminer explicitement une telle famille : on sait en effet (voir par exemple

[10], p. 70) que toute classe d'idéaux de A contient un idéal entier a tel que

,4/2 n!
Na ^ Mk- •- VN!.

7i n

A désignant le discriminant de K. On voit donc qu'on peut prendre pour
D l'ensemble des idéaux premiers p de A tels que Np < MK. Bien entendu,
l'ensemble D ainsi construit est en général « beaucoup trop grand » : mais

il est clair que la détermination d'un D « minimal » équivaut pratiquement
à la détermination de la structure du groupe des classes de A, ce qui est

une autre affaire.

5. Un exemple explicite

Montrons pour terminer, sur un exemple numérique simple, que les

méthodes précédentes mènent à des résultats tout à fait explicites. Nous
considérons le corps quadratique imaginaire K Q (y7—23), pour lequel
n ~ 2, rx 0, r2 « 1, a 1, r 0, W {1,-1}. Posons:

— 1 + sj — 23
a ;

2

le polynôme minimal de a sur Q est X2 + X + 6, et on a A Z [a],
A (le discriminant) —23. De là

4'2 ni / 2JÏ3 • '

(-) -^vUi ^-<4,
71 n n

et le groupe des classes de A est engendré par les classes des facteurs
premiers de 2 et de 3 dans A. Mais (pour p 2,3) on a

A/pA Z [a]/pZ [a] ~ Z {p, X2+X+6)
d'où, puisque 6=0 (mod p),

A/pA~Z [X]/(p,X2+X)^Fp[X]/(X(X+l))
et finalement AlpA oiFpx Fp. Ainsi, 2 et 3 sont décomposés dans A,
et le calcul ci-dessus montre plus précisément qu'on peut écrire

(2) pp, (3) qq,
avec
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