
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 16 (1970)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: NOTE RELATIVE AUX THÉORÈMES DES S-UNITÉS ET DES S-
CLASSES

Autor: Joly, Jean-René

Kapitel: 3. DÉMONSTRATION DU THÉORÈME (3)

DOI: https://doi.org/10.5169/seals-43865

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-43865
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


— 250 —

Reste à prouver (ii). L'inclusion T~XA c As est évidente, puisqu'on a

déjà remarqué que t est une A-unité, donc que les l/tm(m>0) sont des

A-entiers. Inversement, soit y e As, et considérons le produit ytm(m>0).
En tout q $ D, on a, d'après (i),

vq(yn~vq(y)>:0.
En Pj e D, on a, toujours d'après (i),

D (.ytm) vj (y) + mvj (t) > Vj (y) + m.

Choisissons pour m une valeur > sup | Vj(y) | et posons x ytm. Pour
j

toute valuation discrète normalisée v de K, on a alors v (x) > 0 : donc

xeA, y x/tmeT~1A, et finalement AsaT~1A9 ce qui achève de

démontrer (ii), et la proposition.

3. Démonstration du théorème (3)

Nous noterons zl5 z2, zs les coordonnées dans l'espace Rs

Ra x Rd Rr+1 x Rd.

La démonstration se décomposera en quatre parties:

(a) L'homomorphisme \ a pour noyau W.

En effet, si x g US9 l'égalité a M 0 implique d'abord

| x \a+1 | x |s 1,

ce qui signifie que x est non seulement une A-unité, mais une unité de A ;

A (*) 0 implique d'autre part | x \t | x \a — 1, ce qui montre

que cette unité x appartient au noyau de L, donc à W (théorème (1));
inversement, il est clair que x e W implique a (a) 0. D'où (a).

(b) a (Us) est un sous-groupe discret de Rs.

Les valeurs absolues | .|fl+ 1? \ .\s provenant de valuations discrètes,

il est clair qu'on peut trouver dans Rd un voisinage V de l'origine tel que
la condition

(log I X |a+1, log I x |s) e

implique | x |fl+ x
| x \s *= 1, ce qui signifie (si x e Us) que x est

en fait une unité de A. Soit alors V un voisinage borné de 0 dans Ra: la

double condition
x e Us et a W e F x L'

peut s'écrire

x e U et L (x) e F,
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et d'après le théorème (1), ceci n'est possible que pour un nombre fini
de x. D'où (b).

(c) a (Us) est contenu dans l'hyperplan zx + z2 + + zs 0.

Supposons en effet x e Us et décomposons l'idéal xA en facteurs

premiers (dans A) :

xa n
1 <j<d

Egalons les normes absolues des deux membres :

I Nx | n (NVjyAx\
l <j<d

Si <r sont les plongements K -> C indexés de telle manière que

yv/xK

an soient les plongements réels, et que, pour 1 < k < r2, crnA

et <jrjri+rt)+k soient complexes conjugués, la formule ci-dessus devient

n i«vi. n i^i2- n wv;'(y} i,
l<i<rx ri + l<i<a 1 <j<d

soit, compte tenu de la définition des valeurs absolues normalisées :

n i*
1 < i< s

- 1.

(c) résulte de là, en prenant les logarithmes. Notons que nous venons en

fait de redémontrer la formule du produit.

(d) a (Us) contient un réseau de rang s — 1.

C'est en principe la partie difficile : en réalité, tout le travail a été fait dans
le théorème (1). Soit en effet uu u2, ur (rappel: r a— 1 r1+r2 —1)

un système fondamental d'unités de K (nous utilisons le théorème (1)) et
considérons le sous-groupe G de Us engendré par ul3 ur, x1, ...,xd.

\ (G) est un sous-groupe de ^ (Us) (donc un réseau de Rs), et il est engendré

par a (wx), a (ur)> A (*i)> •••? A (xd)• La matrice de ces r + d s — 1

vecteurs dans la base canonique de R5

f

R"

Ra x R s'écrit

Rd

M X

Ai
^2

0

K
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M désignant la matrice de L (w1), L (ur) dans la base canonique de Ra,

et les Xj désignant les quantités log | Xj \j. Par construction des xj9 on a

Â1 ^ 0,... Âd ^ 0; d'après le théorème (1), M est de rang r a — 1 : la
matrice ci-dessus est donc de rang r + d s — 1, et aussi le groupe
A (G), ce qui prouve (d).

(b), (c) et (d) montrent que a (Us) est un réseau de rang exactement
s — 1, et le théorème (3) est démontré.

4. Démonstration du théorème 4

La partie (v) de la proposition 1 du §2 montre que l'application
a |-> aAs définit un homomorphisme surjectif cp du groupe des idéaux
de A sur le groupe des idéaux de As; comme cp transforme évidemment

tout idéal principal en un idéal principal, cp donne lieu par passage au

quotient à un homomorphisme surjectif du groupe des classes d'idéaux
de A sur le groupe des classes d'idéaux de As; comme le premier groupe
est fini, d'ordre h (théorème (2)), le second est lui aussi fini, d'ordre hs

diviseur de /z, d'où la première assertion du théorème (4).
Le même raisonnement prouve d'ailleurs plus généralement que si

S a S\ alors hs> divise hs\ pour achever de démontrer le théorème (4),

il suffit donc de prouver ceci : il existe un ensemble S tel que hs 1.

Or, soient al5 a2, cq des idéaux entiers de A représentant les h classes

d'idéaux de A, et soit D {p1? p2, yd} l'ensemble des idéaux premiers
de A qui divisent l'un au moins des cq; enfin, soit S l'ensemble formé des

places archimédiennes de K et des places discrètes appartenant à D ; alors,

hs 1 : en effet, soit b un idéal entier de As ; il existe un idéal entier a de

A tel que b aAs (prop. 1, (v)); d'autre part, il existe y g K* et i tels que
ci yai; enfin, cq se décompose en produit de facteurs premiers appartenant

tous à D :

a; pF P22.» V7-

D'où immédiatement (prop. 1, (iv))

b yAs;

b, idéal entier quelconque de As, est principal, et hs 1. Le théorème (4)

est entièrement démontré.

Notons qu'il suffit, dans la démonstration ci-dessus, de prendre pour D

une famille finie d'idéaux premiers dont les classes forment un système

générateur du groupe des classes de A. Dans la pratique, il est facile de
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