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Reste a prouver (ii). L’inclusion T~ !4 = Ay est évidente, puisqu’on a
déja remarqué que ¢ est une S-unité, donc que les 1/¢t™ (m=0) sont des
S-entiers. Inversement, soit y € Ag, et considérons le produit yt™ (m=0).
En tout q ¢ D, on a, d’aprés (i),

v (™) = v, () = O.
En p; e D, on a, toujours d’apres (i),
v; (™) = v; (y) +mv; (2) = v; (y) + m.
Choisissons pour m une valeur > sup | v,(y)| et posons x = yt™. Pour
j

toute valuation discréte normalisée v de K, on a alors v (x) = 0: donc
xeA, y=x/t"eT 'A4, et finalement A3 = T !4, ce qui achéve de
démontrer (ii), et la proposition.

3. DEMONSTRATION DU THEOREME (3)

Nous noterons zy, z,, ..., 2
R’ x RY = R""! x RY,
La démonstration se décomposera en quatre parties:

les coordonnées dans I’espace R*® =

S

(a) L ’homomorphisme A a pour noyau W.
En effet, si x € Ug, I’égalité A (x) = 0 implique d’abord
]x|a+1 = o lxlS: I,

ce qui signifie que x est non seulement une S-unité, mais une unité de A4;
A (x) = 0 implique d’autre part | x|, = ... = |x|, = 1, ce qui montre
que cette unité x appartient au noyau de L, donc a W (théoré¢me (1));
inversement, il est clair que x € W implique A (x) = 0. D’ou (a).

(b) A (Uy) est un sous-groupe discret de R°.

Les valeurs absolues | B+ 1s eves .Is provenant de valuations discrétes,
il est clair qu’on peut trouver dans R? un voisinage V' de 1’origine tel que
la condition

(log | x |44 15 o log | x |) eV’
implique ’x |a+1 = e = ’x =1, ce qui signifie (si x e Ug) que x est
en fait une unité de 4. Soit alors V" un voisinage borné de 0 dans R*: la
double condition

xeUget A(x)eV x V'
peut s’écrire
xeUetL(x)el,
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et d’aprés le théoréme (1), ceci n’est possible que pour un nombre fini
de x. D’ou (b). |

(c) A (Uy) est contenu dans I’hyperplan z, + z, + ... + z, = 0.
Supposons en effet xe Ug et décomposons l'idéal x4 en facteurs
premiers (dans A):

xA = ] pi™.

1<j<d

Egalons les normes absolues des deux membres:

INx| = [] (Npp'ie.
1<j<d
Si 4, ...,0, sont les plongements K — C indexés de telle maniére que

0y, ..., 0,, soient les plongements réels, et que, pour 1 < k < r;, 0, 44

et 0, 4.+ Soient complexes conjugués, la formule ci-dessus devient

[T loxl. I lox®. T[ Wpp 7™ =1,

1<i<r; ri+1<i<a 1<j<d
soit, compte tenu de la définition des valeurs absolues normalisées:
H | x|, = 1.
1<i<s
(c) résulte de la, en prenant les logarithmes. Notons que nous venons en
fait de redémontrer la formule du produit.

(d) A (Uy) contient un réseau de rang s — 1.

C’est en principe la partie difficile: en réalité, tout le travail a été fait dans
le théoréme (1). Soit en effet uy, u,, ..., u, (rappel: r = a—1=r,+r,—1)
un systéme fondamental d’unités de K (nous utilisons le théoréme (1)) et
considérons le sous-groupe G de Ug engendré par uy, ..., U, Xq, ..., X,
A (G) est un sous-groupe de A (Us) (donc un réseau de R®), et il est engendré
par A (¢q), .oy A (1), A (X1), -y A (x,). La matrice de ces r +d=s — 1
vecteurs dans la base canonique de R* = R x R s’écrit
(

R* M X
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M désignant la matrice de L (u,), ..., L (4,) dans la base canonique de RY,
et les A; désignant les quantités log | x; |;. Par construction des x;, on a
Ay #0,... 4, #0; d’apres le théoréeme (1), M est de rang r =a — 1: la
matrice ci-dessus est donc de rang r +d=s — 1, et aussi le groupe
A (G), ce qui prouve (d).

(b), (c) et (d) montrent que A (Us) est un réseau de rang exactement
s — 1, et le théoréme (3) est démontré.

4. DEMONSTRATION DU THEOREME 4

La partie (v) de la proposition 1 du §2 montre que I’application
a |- adg définit un homomorphisme surjectif ¢ du groupe des idéaux
de A sur le groupe des idéaux de Ag; comme ¢ transforme évidemment
tout idéal principal en un idéal principal, ¢ donne lieu par passage au
quotient & un homomorphisme surjectif du groupe des classes d’idéaux
de A4 sur le groupe des classes d’idéaux de Ag; comme le premier groupe
est fini, d’ordre 4 (théoréme (2)), le second est lui aussi fini, d’ordre Ag
diviseur de 4, d’ou la premiére assertion du théoréeme (4).

Le méme raisonnement prouve d’ailleurs plus généralement que si
S < 8, alors hg divise hg: pour achever de démontrer le théoréme (4),
il suffit donc de prouver ceci: il existe un ensemble S tel que hg = 1.

Or, soient a,, a,, ..., a, des idéaux entiers de A représentant les / classes
d’idéaux de 4, et soit D = {py, P,, ..., D4} I'ensemble des idéaux premiers
de A4 qui divisent 'un au moins des q;; enfin, soit S 'ensemble formé des
places archimédiennes de K et des places discrétes appartenant 2 D; alors,
hg = 1: en effet, soit b un idéal entier de Ag; il existe un idéal entier a de
A tel que b = adg (prop. 1, (v)); d’autre part, il existe y € K* et i tels que
a = ya;; enfin, a; se décompose en produit de facteurs premiers appar-
tenant tous a D:

a; = Pripst .. pat
D’ou immédiatement (prop. 1, (iv))
b = yAs;

b, idéal entier quelconqde de Ag, est principal, et 2y = 1. Le théoréme (4)
est entierement démontré.

Notons qu’il suffit, dans la démonstration ci-dessus, de prendre pour D
une famille finie d’idéaux premiers dont les classes forment un systéme
générateur du groupe des classes de 4. Dans la pratique, il est facile de
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