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2. ETUDE DE L’ANNEAU DES S-ENTIERS

Conservons les notations du §1. Puisque le groupe des classes de A est
d’ordre fini (théoréme (2)), il existe pour tout j tel que 1 <j < d un
exposant n; = 1 (I'ordre de la classe de p;) tel que I'idéal p}/ soit principal,
disons

Il est clair que v; (x;) = n;. En revanche, pour tout idéal premier q # p;,
on a v, (x;) = 0 (v, désignant la valuation discréte normalisée associée a
q: si q=7p; v, = v;)): dans le cas contraire, en effet, on aurait x; e g,
donc x;4 = p}/ = q, donc successivement p; < q et p; = q (contradlc-
tion!) puisque g est premier et p; maximal.

Il résulte de 1a que les x; sont des S-unités. Posons alors f = x; x, ... X

(c’est aussi une S-unité) et désignons par 7 la partie multiplicative
{1,1,¢%, .., 1™ ..} de A.

Proposition 1.

(i) Pour tout j tel que 1 < j<d, on a v; (t) >0. Au contraire, pour

tout idéal premier q¢ D (on identifie pour Szmplzﬁer les ensembles D et

{131, P2, s Dd}), on av, (t) = 0.
(ii) L’anneau Ag des S-entiers de K est égal a I’anneau de fractions T~ 'A.

(111) Ag est un anneau de Dedekind.

(iv) L'application q |- qAg établit une bijection de [’ensemble des idéaux
premiers de A n’appartenant pas & D sur [’ensemble des idéaux premiers de

Ag. Cette application « tue» les idéaux pfemzers appartenant a D: si
1 <j<d p;ds = As.

(v) L application a |- adg est une surjection de [’ensemble des idéaux
entiers de A sur l’ensemble des idéaux entiers de Ag. Pour que aAg = Ag,
il faut et il suffit que tous les facteurs premiers de a appartiennent @ D.

DEMONSTRATION

(1) résulte de la définition de . (iii) et (iv) sont des conséquences immé-
diates de (ii) et des propriétés des anneaux de fractions (voir [10], chap. 5,
prop. 1 et 3). Enfin (v) résulte immédiatement de (iii) et (iv).
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Reste a prouver (ii). L’inclusion T~ !4 = Ay est évidente, puisqu’on a
déja remarqué que ¢ est une S-unité, donc que les 1/¢t™ (m=0) sont des
S-entiers. Inversement, soit y € Ag, et considérons le produit yt™ (m=0).
En tout q ¢ D, on a, d’aprés (i),

v (™) = v, () = O.
En p; e D, on a, toujours d’apres (i),
v; (™) = v; (y) +mv; (2) = v; (y) + m.
Choisissons pour m une valeur > sup | v,(y)| et posons x = yt™. Pour
j

toute valuation discréte normalisée v de K, on a alors v (x) = 0: donc
xeA, y=x/t"eT 'A4, et finalement A3 = T !4, ce qui achéve de
démontrer (ii), et la proposition.

3. DEMONSTRATION DU THEOREME (3)

Nous noterons zy, z,, ..., 2
R’ x RY = R""! x RY,
La démonstration se décomposera en quatre parties:

les coordonnées dans I’espace R*® =

S

(a) L ’homomorphisme A a pour noyau W.
En effet, si x € Ug, I’égalité A (x) = 0 implique d’abord
]x|a+1 = o lxlS: I,

ce qui signifie que x est non seulement une S-unité, mais une unité de A4;
A (x) = 0 implique d’autre part | x|, = ... = |x|, = 1, ce qui montre
que cette unité x appartient au noyau de L, donc a W (théoré¢me (1));
inversement, il est clair que x € W implique A (x) = 0. D’ou (a).

(b) A (Uy) est un sous-groupe discret de R°.

Les valeurs absolues | B+ 1s eves .Is provenant de valuations discrétes,
il est clair qu’on peut trouver dans R? un voisinage V' de 1’origine tel que
la condition

(log | x |44 15 o log | x |) eV’
implique ’x |a+1 = e = ’x =1, ce qui signifie (si x e Ug) que x est
en fait une unité de 4. Soit alors V" un voisinage borné de 0 dans R*: la
double condition

xeUget A(x)eV x V'
peut s’écrire
xeUetL(x)el,
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