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I
2. Etude de l'anneau des ^-entiers

| Conservons les notations du §1. Puisque le groupe des classes de A est

3 d'ordre fini (théorème (2)), il existe pour tout j tel que 1 < j < d un
exposant rij > 1 (l'ordre de la classe de p;) tel que l'idéal p"-7 soit principal,
disons

P? ~ Ayl (Xj-eA).

Il est clair que Vj (xfi tij. En revanche, pour tout idéal premier q ^ p7-,

on a vq(xj) 0 (vq désignant la valuation discrète normalisée associée à

q: si q pf, vq vf): dans le cas contraire, en effet, on aurait Xj e q,

donc XjA *** pp* c q, donc successivement p7- c q et pj q (contradiction!)

puisque q est premier et p7- maximal.
Il résulte de là que les Xj sont des S-unités. Posons alors t xx x2 xd

(c'est aussi une £-unité) et désignons par T la partie multiplicative
{1, t, t2, .^t"\ ...} de A.

Proposition 1.

(i) Pour tout j tel que 1 Sjû d, on a Vj (t) >0. Au contraire, pour
tout idéal premier q <£ D (on identifie pour simplifier les ensembles D et

:î {Pi, p2> •••> P d}),ona vq (t) 0.

i (h) L'anneau As des S-entiers de K est égal à l'anneau de fractions T'^^A.

j (iii) As est un anneau de Dedekind.

3 (iv) L'application q |-> q/fs établit une bijection de l'ensemble des idéaux
j premiers de A n'appartenant pas à D sur l'ensemble des idéaux premiers de

i As. Cette application « tue» les idéaux premiers appartenant à D: si
3j i < j < d, PjAs ==-- As.

(v) L application a aAs est une surjection de l'ensemble des idéaux
3 entiers de A sur l'ensemble des idéaux entiers de As. Pour que aAs As,

; il faut et il suffit que tous les facteurs premiers de a appartiennent à D.

p Démonstration :

ht
p
g (i) résulte de la définition de t. (iii) et (iv) sont des conséquences immé-

I diates de (ii) et des propriétés des anneaux de fractions (voir [10], chap. 5,
I prop. 1 et 3). Enfin (v) résulte immédiatement de (iii) et (iv).
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Reste à prouver (ii). L'inclusion T~XA c As est évidente, puisqu'on a

déjà remarqué que t est une A-unité, donc que les l/tm(m>0) sont des

A-entiers. Inversement, soit y e As, et considérons le produit ytm(m>0).
En tout q $ D, on a, d'après (i),

vq(yn~vq(y)>:0.
En Pj e D, on a, toujours d'après (i),

D (.ytm) vj (y) + mvj (t) > Vj (y) + m.

Choisissons pour m une valeur > sup | Vj(y) | et posons x ytm. Pour
j

toute valuation discrète normalisée v de K, on a alors v (x) > 0 : donc

xeA, y x/tmeT~1A, et finalement AsaT~1A9 ce qui achève de

démontrer (ii), et la proposition.

3. Démonstration du théorème (3)

Nous noterons zl5 z2, zs les coordonnées dans l'espace Rs

Ra x Rd Rr+1 x Rd.

La démonstration se décomposera en quatre parties:

(a) L'homomorphisme \ a pour noyau W.

En effet, si x g US9 l'égalité a M 0 implique d'abord

| x \a+1 | x |s 1,

ce qui signifie que x est non seulement une A-unité, mais une unité de A ;

A (*) 0 implique d'autre part | x \t | x \a — 1, ce qui montre

que cette unité x appartient au noyau de L, donc à W (théorème (1));
inversement, il est clair que x e W implique a (a) 0. D'où (a).

(b) a (Us) est un sous-groupe discret de Rs.

Les valeurs absolues | .|fl+ 1? \ .\s provenant de valuations discrètes,

il est clair qu'on peut trouver dans Rd un voisinage V de l'origine tel que
la condition

(log I X |a+1, log I x |s) e

implique | x |fl+ x
| x \s *= 1, ce qui signifie (si x e Us) que x est

en fait une unité de A. Soit alors V un voisinage borné de 0 dans Ra: la

double condition
x e Us et a W e F x L'

peut s'écrire

x e U et L (x) e F,
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