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NOTE RELATIVE AUX THÉORÈMES DES S-UNITÉS

ET DES S-CLASSES

par Jean-René Joly

1. Introduction

Soit K un corps de nombres algébriques de degré n sur Q, et désignons

par A l'anneau des entiers de K, par U le groupe des unités de A et par r x

(resp. 2r2) le nombre de plongements réels (resp. non réels) de K dans C;

on a n rx + 2r2, et a rx + r2 est égal au nombre de places archi-

médiennes de K. Si alors |.11? |.|2, |. |fl sont les valeurs absolues normalisées

correspondant à ces places, le classique théorème des unités de

Dirichlet s'énonce:

(1) Soit L : U Ra l'homomorphisme défini par

X |-> (log | X |1; log | X |2, log | X |J.

Le noyau de L est le groupe W (fini, cyclique) des racines de l'unité
appartenant à K, et l'image L (U) est un réseau de rang r — a — 1

dans Ra. Le groupe U est donc produit direct de W par un groupe
abélien libre de rang r.

Ce théorème se double du théorème de la finitude du groupe des classes :

(2) L'ordre h du groupe des classes d'idéaux de A est fini.
Ces deux théorèmes se démontrent facilement, on le sait, à l'aide du

théorème des corps convexes de Minkowski: voir par exemple [3], chap. 12,

ou [7], chap. 2, ou encore [10], chap. 4. Ils ont été généralisés par Hasse

et Chevalley (voir [1]) de la façon suivante: soit S un ensemble fini de

places de K contenant toutes les places archimédiennes, et soit D l'ensemble
des places discrètes de K appartenant h S; si s =--- Card S et si d Card 7),

on a donc f a -|- d. Notons pt, p2, yd les idéaux premiers de A
; correspondant aux places de D, vu v2, vd les valuations discrètes nor-

\\ malisées et |. \a+ |. |„+2, |.|s les valeurs absolues normalisées associées

y à ces places (voir [3], chap. 3), As l'anneau des ^-entiers de K, c'est-à-dire
l'anneau (de Dedekind) formé des x e K tels que v (x) ^ 0 pour toute
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valuation discrète normalisée v autre que vu v2, vd, et Us le groupe
des S-unités de K, c'est-à-dire le groupe des unités de As. Avec ces notations,
Hasse et Chevalley ont donc démontré le théorème des S-unités : *

(3) Soit \ : Us -+ Rs l'homomorphisme défini par ;

X ]-> (log | X | !,log I X \alogI X |a+ !,log I X |.J,

Le noyau de \ est le groupe W des racines de l'unité appartenant à K, %

et l'image \ (Us) est un réseau de rang s — 1 r f d dans Rs. Le

groupe Us est donc produit direct de W par un groupe abélien libre de

rang s — 1. ;

Ce théorème se complète par le théorème des S-classes :

(4) L'ordre hs du groupe des classes d'idéaux de As est fini (en fait, hs

divise h). De plus, pour S «suffisamment grand», hs est égal à 1,

autrement dit, As est principal.

Ces deux théorèmes (des S-unités et des S-classes) ont l'intérêt de

permettre, grâce au lemme de Herbrand, une démonstration non analytique
et relativement simple des deux inégalités fondamentales de la théorie du

corps de classes (voir par exemple [4], chap. 5 et 6, ou [8], chap. VIII, §8-9).
Les démonstrations de ces deux théorèmes qu'on trouve dans la littérature
s'inspirent en général de l'article d'Artin-Whaples [2], et s'appuient sur des i

calculs de volumes et de densités: voir par exemple [5], [6]; dans cet ordre I

d'idées, la méthode la plus élégante consiste d'ailleurs à prouver tout
d'abord la compacité du groupe Jk/K* des classes d'idèles de volume 1,

et à déduire de là les théorèmes (3) et (4): c'est la technique adoptée <

dans [8] et [9] (voir aussi [5], pp. 219-222). \

Le but de la présente note est de donner des théorèmes (3) et (4) une :;j

démonstration directe à partir des classiques théorèmes (1) et (2) de ;:!

Dirichlet; en plus de son caractère naturel, cette méthode a l'avantage
de bien faire voir le mécanisme de la « dilatation » du groupe des V-unités

et de la « contraction » du groupe des V-classes lorsqu'on « dilate »

l'ensemble S. Le §2 est consacré à l'étude de l'anneau As. Les théorèmes (3)
et (4) sont démontrés respectivement aux §3 et 4. Le §5 illustre par un exemple -

les démonstrations données aux §3 et 4. >
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