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NOTE RELATIVE AUX THEOREMES DES S-UNITES
ET DES S-CLASSES

par Jean-René JOLY

1. INTRODUCTION

Soit K un corps de nombres algébriques de degré n sur Q, et désignons
par A Panneau des entiers de K, par U le groupe des unités de A et par ry
(resp. 2r,) le nombre de plongements réels (resp. non réels) de K dans C;
onan=r, +2r, et a=r,; + r, est égal au nombre de places archi-
médiennes de K. Si alors |.|y, |.|2, ..., | .|« sont les valeurs absolues norma-
lisées correspondant A ces places, le classique théoréme des unités de
Dirichlet s’énonce:

(1) Soit L : U — R* ["homomorphisme défini par

o)

Le noyau de L est le groupe W ( fini, cyclique) des racines de l'unité
appartenant a K, et ['image L (U) est un réseau de rang r = a — 1
dans R®. Le groupe U est donc produit direct de W par un groupe
abélien libre de rang r.

x 1= (log| x|, log | x |5, ..., Jog | x

Ce théoréme se double du théoréme de la finitude du groupe des classes :

(2) L’ordre h du groupe des classes d’idéaux de A est fini.

Ces deux théorémes se démontrent facilement, on le sait, a 'aide du
théoréme des corps convexes de Minkowski: voir par exemple [3], chap. 12,
ou [7], chap. 2, ou encore [10], chap. 4. Ils ont été généralisés par Hasse
et Chevalley (voir [1]) de la fagon suivante: soit S un ensemble fini de
places de K contenant toutes les places archimédiennes, et soit D 1’ensemble
des places discretes de K appartenant a S si s = Card S et si d = Card D,
on a donc s =a - d. Notons py, Py, ..., p; les idéaux premiers de A4
correspondant aux places de D, vy, v,, ..., v, les valuations discrétes nor-
malisées et |.[a+ {2 |.|a+2, ... | |5 les valeurs absolues normalisées associées
a ces places (voir [3], chap. 3), A5 'anneau des S-entiers de K, c’est-a-dire
Panneau (de Dedekind) formé des x e K tels que v(x) = 0 pour toute
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valuation discréte normalisée v autre que vy, Vs, ..., ¥y, €t Ug le groupe
des S-unités de K, c’est-a-dire le groupe des unités de Ag. Avec ces notations,
Hasse et Chevalley ont donc démontré le théoréme des S-unités :

(3) Soit A : Ug — R® I"homomorphisme défini par

x }o (log| x|y, .o log | x | log | X |44 15 oo log | x |)-

Le noyau de A est le groupe W des racines de [’unité appartenant a K,
et I'image A (Us) est un réseau de rang s — 1 = r ++ d dans R®. Le
groupe Ug est donc produit direct de W par un groupe abélien libre de
rang s — 1.

Ce théor¢me se complete par le théoréme des S-classes :

(4) L’ordre hg du groupe des classes d’idéaux de Ag est fini (en fait, hg
divise h). De plus, pour S « suffisamment grand», hg est égal a 1,
autrement dit, Ag est principal.

Ces deux théorémes (des S-unités et des S-classes) ont l'intérét de
permettre, grice au lemme de Herbrand, une démonstration non analytique
et relativement simple des deux inégalités fondamentales de la théorie du
corps de classes (voir par exemple [4], chap. 5 et 6, ou [8], chap. VIII, §8-9).
Les démonstrations de ces deux théorémes qu’on trouve dans la littérature
s’'inspirent en général de Particle d’Artin-Whaples [2], et s’appuient sur des
calculs de volumes et de densités: voir par exemple [5], [6]; dans cet ordre
d’idées, la méthode la plus élégante consiste d’ailleurs a prouver tout
d’abord la compacité du groupe Jg/K* des classes d’idéles de volume I,
et a déduire de la les théorémes (3) et (4): c’est la technique adoptée
dans [&] et [9] (voir aussi [5], pp. 219-222).

Le but de la présente note est de donner des théorémes (3) et (4) une
démonstration directe a partir des classiques théorémes (1) et (2) de
Dirichlet; en plus de son caractére naturel, cette méthode a I'avantage
de bien faire voir le m2canismz de la « dilatation » du groupz des S-unités
et de la « contraction » du groupz des S-classes lorsqu’on « dilate » I’en-
semble S. Le §2 est consacré a I’étude de 'anneau Ag. Les théorémes (3)
et (4) sont démontrés respzctivemant aux §3 et 4. Le §5 illustre par un exemple
les démonstrations données aux §3 et 4.
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