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NOTE RELATIVE AUX THÉORÈMES DES S-UNITÉS

ET DES S-CLASSES

par Jean-René Joly

1. Introduction

Soit K un corps de nombres algébriques de degré n sur Q, et désignons

par A l'anneau des entiers de K, par U le groupe des unités de A et par r x

(resp. 2r2) le nombre de plongements réels (resp. non réels) de K dans C;

on a n rx + 2r2, et a rx + r2 est égal au nombre de places archi-

médiennes de K. Si alors |.11? |.|2, |. |fl sont les valeurs absolues normalisées

correspondant à ces places, le classique théorème des unités de

Dirichlet s'énonce:

(1) Soit L : U Ra l'homomorphisme défini par

X |-> (log | X |1; log | X |2, log | X |J.

Le noyau de L est le groupe W (fini, cyclique) des racines de l'unité
appartenant à K, et l'image L (U) est un réseau de rang r — a — 1

dans Ra. Le groupe U est donc produit direct de W par un groupe
abélien libre de rang r.

Ce théorème se double du théorème de la finitude du groupe des classes :

(2) L'ordre h du groupe des classes d'idéaux de A est fini.
Ces deux théorèmes se démontrent facilement, on le sait, à l'aide du

théorème des corps convexes de Minkowski: voir par exemple [3], chap. 12,

ou [7], chap. 2, ou encore [10], chap. 4. Ils ont été généralisés par Hasse

et Chevalley (voir [1]) de la façon suivante: soit S un ensemble fini de

places de K contenant toutes les places archimédiennes, et soit D l'ensemble
des places discrètes de K appartenant h S; si s =--- Card S et si d Card 7),

on a donc f a -|- d. Notons pt, p2, yd les idéaux premiers de A
; correspondant aux places de D, vu v2, vd les valuations discrètes nor-

\\ malisées et |. \a+ |. |„+2, |.|s les valeurs absolues normalisées associées

y à ces places (voir [3], chap. 3), As l'anneau des ^-entiers de K, c'est-à-dire
l'anneau (de Dedekind) formé des x e K tels que v (x) ^ 0 pour toute
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valuation discrète normalisée v autre que vu v2, vd, et Us le groupe
des S-unités de K, c'est-à-dire le groupe des unités de As. Avec ces notations,
Hasse et Chevalley ont donc démontré le théorème des S-unités : *

(3) Soit \ : Us -+ Rs l'homomorphisme défini par ;

X ]-> (log | X | !,log I X \alogI X |a+ !,log I X |.J,

Le noyau de \ est le groupe W des racines de l'unité appartenant à K, %

et l'image \ (Us) est un réseau de rang s — 1 r f d dans Rs. Le

groupe Us est donc produit direct de W par un groupe abélien libre de

rang s — 1. ;

Ce théorème se complète par le théorème des S-classes :

(4) L'ordre hs du groupe des classes d'idéaux de As est fini (en fait, hs

divise h). De plus, pour S «suffisamment grand», hs est égal à 1,

autrement dit, As est principal.

Ces deux théorèmes (des S-unités et des S-classes) ont l'intérêt de

permettre, grâce au lemme de Herbrand, une démonstration non analytique
et relativement simple des deux inégalités fondamentales de la théorie du

corps de classes (voir par exemple [4], chap. 5 et 6, ou [8], chap. VIII, §8-9).
Les démonstrations de ces deux théorèmes qu'on trouve dans la littérature
s'inspirent en général de l'article d'Artin-Whaples [2], et s'appuient sur des i

calculs de volumes et de densités: voir par exemple [5], [6]; dans cet ordre I

d'idées, la méthode la plus élégante consiste d'ailleurs à prouver tout
d'abord la compacité du groupe Jk/K* des classes d'idèles de volume 1,

et à déduire de là les théorèmes (3) et (4): c'est la technique adoptée <

dans [8] et [9] (voir aussi [5], pp. 219-222). \

Le but de la présente note est de donner des théorèmes (3) et (4) une :;j

démonstration directe à partir des classiques théorèmes (1) et (2) de ;:!

Dirichlet; en plus de son caractère naturel, cette méthode a l'avantage
de bien faire voir le mécanisme de la « dilatation » du groupe des V-unités

et de la « contraction » du groupe des V-classes lorsqu'on « dilate »

l'ensemble S. Le §2 est consacré à l'étude de l'anneau As. Les théorèmes (3)
et (4) sont démontrés respectivement aux §3 et 4. Le §5 illustre par un exemple -

les démonstrations données aux §3 et 4. >



I
2. Etude de l'anneau des ^-entiers

| Conservons les notations du §1. Puisque le groupe des classes de A est

3 d'ordre fini (théorème (2)), il existe pour tout j tel que 1 < j < d un
exposant rij > 1 (l'ordre de la classe de p;) tel que l'idéal p"-7 soit principal,
disons

P? ~ Ayl (Xj-eA).

Il est clair que Vj (xfi tij. En revanche, pour tout idéal premier q ^ p7-,

on a vq(xj) 0 (vq désignant la valuation discrète normalisée associée à

q: si q pf, vq vf): dans le cas contraire, en effet, on aurait Xj e q,

donc XjA *** pp* c q, donc successivement p7- c q et pj q (contradiction!)

puisque q est premier et p7- maximal.
Il résulte de là que les Xj sont des S-unités. Posons alors t xx x2 xd

(c'est aussi une £-unité) et désignons par T la partie multiplicative
{1, t, t2, .^t"\ ...} de A.

Proposition 1.

(i) Pour tout j tel que 1 Sjû d, on a Vj (t) >0. Au contraire, pour
tout idéal premier q <£ D (on identifie pour simplifier les ensembles D et

:î {Pi, p2> •••> P d}),ona vq (t) 0.

i (h) L'anneau As des S-entiers de K est égal à l'anneau de fractions T'^^A.

j (iii) As est un anneau de Dedekind.

3 (iv) L'application q |-> q/fs établit une bijection de l'ensemble des idéaux
j premiers de A n'appartenant pas à D sur l'ensemble des idéaux premiers de

i As. Cette application « tue» les idéaux premiers appartenant à D: si
3j i < j < d, PjAs ==-- As.

(v) L application a aAs est une surjection de l'ensemble des idéaux
3 entiers de A sur l'ensemble des idéaux entiers de As. Pour que aAs As,

; il faut et il suffit que tous les facteurs premiers de a appartiennent à D.

p Démonstration :

ht
p
g (i) résulte de la définition de t. (iii) et (iv) sont des conséquences immé-

I diates de (ii) et des propriétés des anneaux de fractions (voir [10], chap. 5,
I prop. 1 et 3). Enfin (v) résulte immédiatement de (iii) et (iv).
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Reste à prouver (ii). L'inclusion T~XA c As est évidente, puisqu'on a

déjà remarqué que t est une A-unité, donc que les l/tm(m>0) sont des

A-entiers. Inversement, soit y e As, et considérons le produit ytm(m>0).
En tout q $ D, on a, d'après (i),

vq(yn~vq(y)>:0.
En Pj e D, on a, toujours d'après (i),

D (.ytm) vj (y) + mvj (t) > Vj (y) + m.

Choisissons pour m une valeur > sup | Vj(y) | et posons x ytm. Pour
j

toute valuation discrète normalisée v de K, on a alors v (x) > 0 : donc

xeA, y x/tmeT~1A, et finalement AsaT~1A9 ce qui achève de

démontrer (ii), et la proposition.

3. Démonstration du théorème (3)

Nous noterons zl5 z2, zs les coordonnées dans l'espace Rs

Ra x Rd Rr+1 x Rd.

La démonstration se décomposera en quatre parties:

(a) L'homomorphisme \ a pour noyau W.

En effet, si x g US9 l'égalité a M 0 implique d'abord

| x \a+1 | x |s 1,

ce qui signifie que x est non seulement une A-unité, mais une unité de A ;

A (*) 0 implique d'autre part | x \t | x \a — 1, ce qui montre

que cette unité x appartient au noyau de L, donc à W (théorème (1));
inversement, il est clair que x e W implique a (a) 0. D'où (a).

(b) a (Us) est un sous-groupe discret de Rs.

Les valeurs absolues | .|fl+ 1? \ .\s provenant de valuations discrètes,

il est clair qu'on peut trouver dans Rd un voisinage V de l'origine tel que
la condition

(log I X |a+1, log I x |s) e

implique | x |fl+ x
| x \s *= 1, ce qui signifie (si x e Us) que x est

en fait une unité de A. Soit alors V un voisinage borné de 0 dans Ra: la

double condition
x e Us et a W e F x L'

peut s'écrire

x e U et L (x) e F,
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et d'après le théorème (1), ceci n'est possible que pour un nombre fini
de x. D'où (b).

(c) a (Us) est contenu dans l'hyperplan zx + z2 + + zs 0.

Supposons en effet x e Us et décomposons l'idéal xA en facteurs

premiers (dans A) :

xa n
1 <j<d

Egalons les normes absolues des deux membres :

I Nx | n (NVjyAx\
l <j<d

Si <r sont les plongements K -> C indexés de telle manière que

yv/xK

an soient les plongements réels, et que, pour 1 < k < r2, crnA

et <jrjri+rt)+k soient complexes conjugués, la formule ci-dessus devient

n i«vi. n i^i2- n wv;'(y} i,
l<i<rx ri + l<i<a 1 <j<d

soit, compte tenu de la définition des valeurs absolues normalisées :

n i*
1 < i< s

- 1.

(c) résulte de là, en prenant les logarithmes. Notons que nous venons en

fait de redémontrer la formule du produit.

(d) a (Us) contient un réseau de rang s — 1.

C'est en principe la partie difficile : en réalité, tout le travail a été fait dans
le théorème (1). Soit en effet uu u2, ur (rappel: r a— 1 r1+r2 —1)

un système fondamental d'unités de K (nous utilisons le théorème (1)) et
considérons le sous-groupe G de Us engendré par ul3 ur, x1, ...,xd.

\ (G) est un sous-groupe de ^ (Us) (donc un réseau de Rs), et il est engendré

par a (wx), a (ur)> A (*i)> •••? A (xd)• La matrice de ces r + d s — 1

vecteurs dans la base canonique de R5

f

R"

Ra x R s'écrit

Rd

M X

Ai
^2

0

K
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M désignant la matrice de L (w1), L (ur) dans la base canonique de Ra,

et les Xj désignant les quantités log | Xj \j. Par construction des xj9 on a

Â1 ^ 0,... Âd ^ 0; d'après le théorème (1), M est de rang r a — 1 : la
matrice ci-dessus est donc de rang r + d s — 1, et aussi le groupe
A (G), ce qui prouve (d).

(b), (c) et (d) montrent que a (Us) est un réseau de rang exactement
s — 1, et le théorème (3) est démontré.

4. Démonstration du théorème 4

La partie (v) de la proposition 1 du §2 montre que l'application
a |-> aAs définit un homomorphisme surjectif cp du groupe des idéaux
de A sur le groupe des idéaux de As; comme cp transforme évidemment

tout idéal principal en un idéal principal, cp donne lieu par passage au

quotient à un homomorphisme surjectif du groupe des classes d'idéaux
de A sur le groupe des classes d'idéaux de As; comme le premier groupe
est fini, d'ordre h (théorème (2)), le second est lui aussi fini, d'ordre hs

diviseur de /z, d'où la première assertion du théorème (4).
Le même raisonnement prouve d'ailleurs plus généralement que si

S a S\ alors hs> divise hs\ pour achever de démontrer le théorème (4),

il suffit donc de prouver ceci : il existe un ensemble S tel que hs 1.

Or, soient al5 a2, cq des idéaux entiers de A représentant les h classes

d'idéaux de A, et soit D {p1? p2, yd} l'ensemble des idéaux premiers
de A qui divisent l'un au moins des cq; enfin, soit S l'ensemble formé des

places archimédiennes de K et des places discrètes appartenant à D ; alors,

hs 1 : en effet, soit b un idéal entier de As ; il existe un idéal entier a de

A tel que b aAs (prop. 1, (v)); d'autre part, il existe y g K* et i tels que
ci yai; enfin, cq se décompose en produit de facteurs premiers appartenant

tous à D :

a; pF P22.» V7-

D'où immédiatement (prop. 1, (iv))

b yAs;

b, idéal entier quelconque de As, est principal, et hs 1. Le théorème (4)

est entièrement démontré.

Notons qu'il suffit, dans la démonstration ci-dessus, de prendre pour D

une famille finie d'idéaux premiers dont les classes forment un système

générateur du groupe des classes de A. Dans la pratique, il est facile de
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déterminer explicitement une telle famille : on sait en effet (voir par exemple

[10], p. 70) que toute classe d'idéaux de A contient un idéal entier a tel que

,4/2 n!
Na ^ Mk- •- VN!.

7i n

A désignant le discriminant de K. On voit donc qu'on peut prendre pour
D l'ensemble des idéaux premiers p de A tels que Np < MK. Bien entendu,
l'ensemble D ainsi construit est en général « beaucoup trop grand » : mais

il est clair que la détermination d'un D « minimal » équivaut pratiquement
à la détermination de la structure du groupe des classes de A, ce qui est

une autre affaire.

5. Un exemple explicite

Montrons pour terminer, sur un exemple numérique simple, que les

méthodes précédentes mènent à des résultats tout à fait explicites. Nous
considérons le corps quadratique imaginaire K Q (y7—23), pour lequel
n ~ 2, rx 0, r2 « 1, a 1, r 0, W {1,-1}. Posons:

— 1 + sj — 23
a ;

2

le polynôme minimal de a sur Q est X2 + X + 6, et on a A Z [a],
A (le discriminant) —23. De là

4'2 ni / 2JÏ3 • '

(-) -^vUi ^-<4,
71 n n

et le groupe des classes de A est engendré par les classes des facteurs
premiers de 2 et de 3 dans A. Mais (pour p 2,3) on a

A/pA Z [a]/pZ [a] ~ Z {p, X2+X+6)
d'où, puisque 6=0 (mod p),

A/pA~Z [X]/(p,X2+X)^Fp[X]/(X(X+l))
et finalement AlpA oiFpx Fp. Ainsi, 2 et 3 sont décomposés dans A,
et le calcul ci-dessus montre plus précisément qu'on peut écrire

(2) pp, (3) qq,
avec



— 254 —

P — (2, a), p — (2, a+1),
et

q (3, a), q =» (3, a+1).

On vérifie sans peine que pq (a), pq (a+1) et p3 (a+2). En
revanche, p2 n'est pas principal: car Ap2 4, mais p2 ^ (2), alors que
2 et —2 sont les seuls entiers de K ayant pour norme 4.

Il résulte de tout ceci que p ~ p"1, q ^ q"1, q ^ q"1 ^ p, p3 ^ (1),
mais qu'on n'a pas p2 ~ (1) (ni a fortiori p ~ (1)): le groupe des classes

de A est donc cyclique d'ordre 3, engendré par la classe de p (2, a).

Soit maintenant p^ l'unique place archimédienne de K et posons

D{p}, 5={pœ, p}.

Alors, avec les notations du §1, on a d 1, s 2, px p, nx 3,

Xl t a + 2. Et on peut affirmer:
L'anneau As est formé des éléments de K du type (x+ya) / (a+2)m

(m > 0 ; x, yeZ) ; As est un anneau principal : hs 1 ; enfin, le groupe t/s
est formé des éléments du type + (a+2)m (meZ) (le fait que a + 2 soit

une «unité fondamentale» pour As tient à ce que A (a+2) 8 et que
ni 2 ni 4 ne sont normes de S-unités de K).
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