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NOTE RELATIVE AUX THEOREMES DES S-UNITES
ET DES S-CLASSES

par Jean-René JOLY

1. INTRODUCTION

Soit K un corps de nombres algébriques de degré n sur Q, et désignons
par A Panneau des entiers de K, par U le groupe des unités de A et par ry
(resp. 2r,) le nombre de plongements réels (resp. non réels) de K dans C;
onan=r, +2r, et a=r,; + r, est égal au nombre de places archi-
médiennes de K. Si alors |.|y, |.|2, ..., | .|« sont les valeurs absolues norma-
lisées correspondant A ces places, le classique théoréme des unités de
Dirichlet s’énonce:

(1) Soit L : U — R* ["homomorphisme défini par

o)

Le noyau de L est le groupe W ( fini, cyclique) des racines de l'unité
appartenant a K, et ['image L (U) est un réseau de rang r = a — 1
dans R®. Le groupe U est donc produit direct de W par un groupe
abélien libre de rang r.

x 1= (log| x|, log | x |5, ..., Jog | x

Ce théoréme se double du théoréme de la finitude du groupe des classes :

(2) L’ordre h du groupe des classes d’idéaux de A est fini.

Ces deux théorémes se démontrent facilement, on le sait, a 'aide du
théoréme des corps convexes de Minkowski: voir par exemple [3], chap. 12,
ou [7], chap. 2, ou encore [10], chap. 4. Ils ont été généralisés par Hasse
et Chevalley (voir [1]) de la fagon suivante: soit S un ensemble fini de
places de K contenant toutes les places archimédiennes, et soit D 1’ensemble
des places discretes de K appartenant a S si s = Card S et si d = Card D,
on a donc s =a - d. Notons py, Py, ..., p; les idéaux premiers de A4
correspondant aux places de D, vy, v,, ..., v, les valuations discrétes nor-
malisées et |.[a+ {2 |.|a+2, ... | |5 les valeurs absolues normalisées associées
a ces places (voir [3], chap. 3), A5 'anneau des S-entiers de K, c’est-a-dire
Panneau (de Dedekind) formé des x e K tels que v(x) = 0 pour toute
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valuation discréte normalisée v autre que vy, Vs, ..., ¥y, €t Ug le groupe
des S-unités de K, c’est-a-dire le groupe des unités de Ag. Avec ces notations,
Hasse et Chevalley ont donc démontré le théoréme des S-unités :

(3) Soit A : Ug — R® I"homomorphisme défini par

x }o (log| x|y, .o log | x | log | X |44 15 oo log | x |)-

Le noyau de A est le groupe W des racines de [’unité appartenant a K,
et I'image A (Us) est un réseau de rang s — 1 = r ++ d dans R®. Le
groupe Ug est donc produit direct de W par un groupe abélien libre de
rang s — 1.

Ce théor¢me se complete par le théoréme des S-classes :

(4) L’ordre hg du groupe des classes d’idéaux de Ag est fini (en fait, hg
divise h). De plus, pour S « suffisamment grand», hg est égal a 1,
autrement dit, Ag est principal.

Ces deux théorémes (des S-unités et des S-classes) ont l'intérét de
permettre, grice au lemme de Herbrand, une démonstration non analytique
et relativement simple des deux inégalités fondamentales de la théorie du
corps de classes (voir par exemple [4], chap. 5 et 6, ou [8], chap. VIII, §8-9).
Les démonstrations de ces deux théorémes qu’on trouve dans la littérature
s’'inspirent en général de Particle d’Artin-Whaples [2], et s’appuient sur des
calculs de volumes et de densités: voir par exemple [5], [6]; dans cet ordre
d’idées, la méthode la plus élégante consiste d’ailleurs a prouver tout
d’abord la compacité du groupe Jg/K* des classes d’idéles de volume I,
et a déduire de la les théorémes (3) et (4): c’est la technique adoptée
dans [&] et [9] (voir aussi [5], pp. 219-222).

Le but de la présente note est de donner des théorémes (3) et (4) une
démonstration directe a partir des classiques théorémes (1) et (2) de
Dirichlet; en plus de son caractére naturel, cette méthode a I'avantage
de bien faire voir le m2canismz de la « dilatation » du groupz des S-unités
et de la « contraction » du groupz des S-classes lorsqu’on « dilate » I’en-
semble S. Le §2 est consacré a I’étude de 'anneau Ag. Les théorémes (3)
et (4) sont démontrés respzctivemant aux §3 et 4. Le §5 illustre par un exemple
les démonstrations données aux §3 et 4.
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2. ETUDE DE L’ANNEAU DES S-ENTIERS

Conservons les notations du §1. Puisque le groupe des classes de A est
d’ordre fini (théoréme (2)), il existe pour tout j tel que 1 <j < d un
exposant n; = 1 (I'ordre de la classe de p;) tel que I'idéal p}/ soit principal,
disons

Il est clair que v; (x;) = n;. En revanche, pour tout idéal premier q # p;,
on a v, (x;) = 0 (v, désignant la valuation discréte normalisée associée a
q: si q=7p; v, = v;)): dans le cas contraire, en effet, on aurait x; e g,
donc x;4 = p}/ = q, donc successivement p; < q et p; = q (contradlc-
tion!) puisque g est premier et p; maximal.

Il résulte de 1a que les x; sont des S-unités. Posons alors f = x; x, ... X

(c’est aussi une S-unité) et désignons par 7 la partie multiplicative
{1,1,¢%, .., 1™ ..} de A.

Proposition 1.

(i) Pour tout j tel que 1 < j<d, on a v; (t) >0. Au contraire, pour

tout idéal premier q¢ D (on identifie pour Szmplzﬁer les ensembles D et

{131, P2, s Dd}), on av, (t) = 0.
(ii) L’anneau Ag des S-entiers de K est égal a I’anneau de fractions T~ 'A.

(111) Ag est un anneau de Dedekind.

(iv) L'application q |- qAg établit une bijection de [’ensemble des idéaux
premiers de A n’appartenant pas & D sur [’ensemble des idéaux premiers de

Ag. Cette application « tue» les idéaux pfemzers appartenant a D: si
1 <j<d p;ds = As.

(v) L application a |- adg est une surjection de [’ensemble des idéaux
entiers de A sur l’ensemble des idéaux entiers de Ag. Pour que aAg = Ag,
il faut et il suffit que tous les facteurs premiers de a appartiennent @ D.

DEMONSTRATION

(1) résulte de la définition de . (iii) et (iv) sont des conséquences immé-
diates de (ii) et des propriétés des anneaux de fractions (voir [10], chap. 5,
prop. 1 et 3). Enfin (v) résulte immédiatement de (iii) et (iv).
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Reste a prouver (ii). L’inclusion T~ !4 = Ay est évidente, puisqu’on a
déja remarqué que ¢ est une S-unité, donc que les 1/¢t™ (m=0) sont des
S-entiers. Inversement, soit y € Ag, et considérons le produit yt™ (m=0).
En tout q ¢ D, on a, d’aprés (i),

v (™) = v, () = O.
En p; e D, on a, toujours d’apres (i),
v; (™) = v; (y) +mv; (2) = v; (y) + m.
Choisissons pour m une valeur > sup | v,(y)| et posons x = yt™. Pour
j

toute valuation discréte normalisée v de K, on a alors v (x) = 0: donc
xeA, y=x/t"eT 'A4, et finalement A3 = T !4, ce qui achéve de
démontrer (ii), et la proposition.

3. DEMONSTRATION DU THEOREME (3)

Nous noterons zy, z,, ..., 2
R’ x RY = R""! x RY,
La démonstration se décomposera en quatre parties:

les coordonnées dans I’espace R*® =

S

(a) L ’homomorphisme A a pour noyau W.
En effet, si x € Ug, I’égalité A (x) = 0 implique d’abord
]x|a+1 = o lxlS: I,

ce qui signifie que x est non seulement une S-unité, mais une unité de A4;
A (x) = 0 implique d’autre part | x|, = ... = |x|, = 1, ce qui montre
que cette unité x appartient au noyau de L, donc a W (théoré¢me (1));
inversement, il est clair que x € W implique A (x) = 0. D’ou (a).

(b) A (Uy) est un sous-groupe discret de R°.

Les valeurs absolues | B+ 1s eves .Is provenant de valuations discrétes,
il est clair qu’on peut trouver dans R? un voisinage V' de 1’origine tel que
la condition

(log | x |44 15 o log | x |) eV’
implique ’x |a+1 = e = ’x =1, ce qui signifie (si x e Ug) que x est
en fait une unité de 4. Soit alors V" un voisinage borné de 0 dans R*: la
double condition

xeUget A(x)eV x V'
peut s’écrire
xeUetL(x)el,
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et d’aprés le théoréme (1), ceci n’est possible que pour un nombre fini
de x. D’ou (b). |

(c) A (Uy) est contenu dans I’hyperplan z, + z, + ... + z, = 0.
Supposons en effet xe Ug et décomposons l'idéal x4 en facteurs
premiers (dans A):

xA = ] pi™.

1<j<d

Egalons les normes absolues des deux membres:

INx| = [] (Npp'ie.
1<j<d
Si 4, ...,0, sont les plongements K — C indexés de telle maniére que

0y, ..., 0,, soient les plongements réels, et que, pour 1 < k < r;, 0, 44

et 0, 4.+ Soient complexes conjugués, la formule ci-dessus devient

[T loxl. I lox®. T[ Wpp 7™ =1,

1<i<r; ri+1<i<a 1<j<d
soit, compte tenu de la définition des valeurs absolues normalisées:
H | x|, = 1.
1<i<s
(c) résulte de la, en prenant les logarithmes. Notons que nous venons en
fait de redémontrer la formule du produit.

(d) A (Uy) contient un réseau de rang s — 1.

C’est en principe la partie difficile: en réalité, tout le travail a été fait dans
le théoréme (1). Soit en effet uy, u,, ..., u, (rappel: r = a—1=r,+r,—1)
un systéme fondamental d’unités de K (nous utilisons le théoréme (1)) et
considérons le sous-groupe G de Ug engendré par uy, ..., U, Xq, ..., X,
A (G) est un sous-groupe de A (Us) (donc un réseau de R®), et il est engendré
par A (¢q), .oy A (1), A (X1), -y A (x,). La matrice de ces r +d=s — 1
vecteurs dans la base canonique de R* = R x R s’écrit
(

R* M X
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M désignant la matrice de L (u,), ..., L (4,) dans la base canonique de RY,
et les A; désignant les quantités log | x; |;. Par construction des x;, on a
Ay #0,... 4, #0; d’apres le théoréeme (1), M est de rang r =a — 1: la
matrice ci-dessus est donc de rang r +d=s — 1, et aussi le groupe
A (G), ce qui prouve (d).

(b), (c) et (d) montrent que A (Us) est un réseau de rang exactement
s — 1, et le théoréme (3) est démontré.

4. DEMONSTRATION DU THEOREME 4

La partie (v) de la proposition 1 du §2 montre que I’application
a |- adg définit un homomorphisme surjectif ¢ du groupe des idéaux
de A sur le groupe des idéaux de Ag; comme ¢ transforme évidemment
tout idéal principal en un idéal principal, ¢ donne lieu par passage au
quotient & un homomorphisme surjectif du groupe des classes d’idéaux
de A4 sur le groupe des classes d’idéaux de Ag; comme le premier groupe
est fini, d’ordre 4 (théoréme (2)), le second est lui aussi fini, d’ordre Ag
diviseur de 4, d’ou la premiére assertion du théoréeme (4).

Le méme raisonnement prouve d’ailleurs plus généralement que si
S < 8, alors hg divise hg: pour achever de démontrer le théoréme (4),
il suffit donc de prouver ceci: il existe un ensemble S tel que hg = 1.

Or, soient a,, a,, ..., a, des idéaux entiers de A représentant les / classes
d’idéaux de 4, et soit D = {py, P,, ..., D4} I'ensemble des idéaux premiers
de A4 qui divisent 'un au moins des q;; enfin, soit S 'ensemble formé des
places archimédiennes de K et des places discrétes appartenant 2 D; alors,
hg = 1: en effet, soit b un idéal entier de Ag; il existe un idéal entier a de
A tel que b = adg (prop. 1, (v)); d’autre part, il existe y € K* et i tels que
a = ya;; enfin, a; se décompose en produit de facteurs premiers appar-
tenant tous a D:

a; = Pripst .. pat
D’ou immédiatement (prop. 1, (iv))
b = yAs;

b, idéal entier quelconqde de Ag, est principal, et 2y = 1. Le théoréme (4)
est entierement démontré.

Notons qu’il suffit, dans la démonstration ci-dessus, de prendre pour D
une famille finie d’idéaux premiers dont les classes forment un systéme
générateur du groupe des classes de 4. Dans la pratique, il est facile de
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déterminer explicitement une telle famille: on sait en effet (voir par exemple
[10], p. 70) que toute classe d’idéaux de 4 contient un idéal entier a tel que

47 n! —
Na £ Mg = (=) .— /141,

. n
4 désignant le discriminant de K. On voit donc qu’on peut prendre pour
D T'ensemble des idéaux premiers p de A tels que Np < M. Bien entendu,
Iensemble D ainsi construit est en général « beaucoup trop grand »: mais
il est clair que la détermination d’un D « minimal » équivaut pratiquement
a la détermination de la structure du groupe des classes de A, ce qui est
une autre affaire.

S. UN EXEMPLE EXPLICITE

Montrons pour terminer, sur un exemple numérique simple, que les
méthodes précédentes ménent a des résultats tout & fait explicites. Nous

considérons le corps quadratique imaginaire K = Q (\/—~23), pour lequel
n=2r=0r,=1,a=1r=0, W= {1, —1}. Posons:

. —-1+\/——23;

2

le polyndme minimal de o sur Q est X* 4 X 4 6, et on a 4 = Z [q«],
4 (le discriminant) = —23. De 13

"2 nl!

4 2./23
(;) /4] =——\é_s4,

et le groupe des classes de A est engendré par les classes des facteurs pre-
miers de 2 et de 3 dans 4. Mais (pour p = 2,3) on a

AlpA = Z[o] | pZ [¢] ~ Z [X]/ (p, X*+ X+-6)
d’ou, puisque 6 = 0 (mod p),
AlpAd ~ Z[X]/(p, X*+X) ~F,[X]/ (X (X+1))

et finalement A/p4d ~ F, X F,. Ainsi, 2 et 3 sont décomposés dans A4,
et le calcul ci-dessus montre plus précisément qu’on peut écrire

2) =pp, ()= qq,

n

avec
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p=Q2, 0, p=(2 aitl),
et

a=@G,2, g=@Gatl).

On vérifie sans peine que pqg = («), pq = (a+1) et p*> = («+2). En
revanche, p? n’est pas principal: car Np? = 4, mais p? # (2), alors que
2 et —2 sont les seuls entiers de K ayant pour norme 4.

Il résulte de tout cecique p ~p~ L, g~ q L g~q 1 ~p, > ~ (D),
mais qu'on n’a pas p> ~ (1) (ni a fortiori p ~ (1)): le groupe des classes
de A est donc cyclique d’ordre 3, engendré par la classe de p = (2, «).

Soit maintenant p, 'unique place archimédienne de K et posons

D= {p}, S= {p. P}

Alors, avec les notations du §1, on a d=1, s=2, p,=9p, n; =3,
x; =t =a + 2. Et on peut affirmer:

L’anneau Ag est formé des éléments de K du type (x+yo) [ (x+2)"
(m=0; x, yeZ); Ag est un anneau principal: hg = 1; enfin, le groupe Ug
est formé des éléments du type =+ (x-+2)" (meZ) (le fait que o -+ 2 soit
une « unité fondamentale » pour Ag tient a ce que N (x+2) = 8 et que
ni 2 ni 4 ne sont normes de S-unités de K).

1
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