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X /(«i, n2, ..,,nq) (2)
X2 "1 ^*1

"2 ^ *2

nq<xq

Cxxiai x2ia2... x^fl« Li (log Xi)... Lfl(log xq) + 0 [1]

Nous démontrerons ce résultat en nous plaçant dans le cas où q 2.

Le lecteur verra facilement comment la démonstration doit être modifiée

pour traiter le cas où q > 2.

Pour simplifier l'écriture, nous remplacerons n1 et n2 par m et n et

xx et x2 par x et y.
En restant dans le cas où q — 2, nous préciserons — comme on peut

le faire pour le résultat de Halâsz — dans quel cas on a chacune des

circonstances (a) et (b).
De plus, nous donnerons des théorèmes fournissant des conditions

nécessaires et suffisantes pour qu'une fonction / de 2R2 satisfaisant à

| (m, n) | < 1 quels que soient m et n e N *

possède une valeur moyenne non nulle, ou pour que

— X «)
xy m < x

n<y

tende vers une limite lorsque x et y tendent vers + oo avec un rapport fixe

quelconque, cette limite étant indépendante de la valeur du rapport.
Ici encore, le cas où q 2 n'est pas essentiellement différent du cas où

q > 2.

Enfin, nous indiquerons deux résultats particuliers intéressants.

1.3. Il est entendu une fois pour toutes que, tout au long de cet article, la
lettre p représente toujours un nombre premier. Les lettres m, n, d, y, L, r, s

représentent des entiers; m, n, d sont toujours des entiers > 1.

Une somme qui ne contient aucun terme est considérée comme nulle,
et un produit qui n'a aucun facteur est considéré comme égal à 1.

2. Préliminaires

2.1. Il nous est utile de donner plus de précisions sur les résultats de Halâsz.

/ étant fonction arithmétique multiplicative satisfaisant à

\f(n) | <1 pour tout n > 1,

Halâsz montre d'abord qu'il existe au plus un u réel tel que l'on ait
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YJlp{l-Xe[f(p)p-i«]}< +00 (3)

On a ensuite les résultats suivants :

/. S'il n'existe aucun u réel tel que l'on ait (3), / possède une valeur

moyenne nulle.

2. Supposons maintenant qu'il existe un u réel tel que l'on ait (3), soit u0.

Alors,

a. Si 2~irUo f(2r) -1 pour tout r > 1, f possède une valeur moyenne
nulle.

b. Si 2~lrUof(2r) # — 1 pour au moins un r > 1, on a (1) avec a — u0 et

L1 (t) exp (/ £
1

/m [/0)p"iUo]l.
t P<et P

2.1.1. Ajoutons que, lorsque l'on est dans le cas 2 avec u0 « 0, c'est-à-dire

lorsque l'on a

I1 {l-5Re/Cp)} < +co,
P

on a pour x tendant vers + oo

- e /(«)= n +
X „<* p<x \ PJ L r l P J

Ceci est une conséquence inmédiate d'un théorème que nous avons
établi ailleurs 2).

2.2. Il nous est utile aussi de rappeler quelques notions et quelques résultats
élémentaires concernant les fonctions de séque nous avons indiqués dans

l'article cité au paragraphe 1.1 (et qui se généralisent naturellement à sé

2.2.1. Dans sé2 on définit l'opération de convolution de la façon suivante:

/* g est la fonction h définie par

^ / m n Y
h {m, n) —Y,f(dud2)g[—,--\

d\jm \"l "2/
d2/n

La convolution est commutative et associative.

x) Il est clair que, pour chaque p, 1 — Re [f{p)p iu] > 0.
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2.2.2. /et g étant deux fonctions de sé2 et w± et w2 deux variables complexes,

si les séries doubles

/(m, n) g (m, n)

m,n> 1 mWlnW2 m,n> 1 M1 li2

sont absolument convergentes pour He a et He w2 ß, il en est de

même de la série double

h (m, n)
> ou h f * g,

m,n> 1 mWl nW2

et on a pour a et He w2 — ß

| h (m, w)
_ / y / y g (m,

m,r> 1
nw"2 ~

V „à 1 «W2/ V m,r> 1 mWl «W2/

2.2.3. Toute fonction / de telle <lue/(l> 1)^0 Peut se mettre sous la

forme

f= g *K
où h (m, n) f (m, 1)/(l, ri) et g satisfait à

g (m, 1) 0 pour m > 1 et g (1, n) 0 pour n > 1.

Si/ appartient à SDÎ2, les fonctions g et h appartiennent aussi à 9Jt2.

I 2.3. Indiquons aussi le résultat suivant:
j Soit/une fonction de 9Jc2 satisfaisant à \f (m, n) | < 1 quels que soient

1 m et n > 1.

Supposons que
1 ° On n'a pas

| |/(2, 1) | 1 et/(2r, 1) (—l)r+1/(2, 1 pour tout r > 1;

2° On n'a pas
| |/(1> 2) | 1 et/(l, 2S) — l)s+1/(l, 2)s pour tout s >1.

Alors la fonction g considérée au paragraphe 2.2.3 satisfait à

L
1 1 < +oo, (4)

m,n > 1 m n

de sorte que la série double

j g(m,
\ m,n>,/»'"

j est absolument convergente pour 9+ vvx 5t<? 1.

m
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z

De plus, on a pour 3Re 3Re 1

g (m,ri)

N 1 W)m,/i> 1 r>l n

n f(p\ Pk)

_ J\k> 0 P
J\Vi + kW2

+y\f(p]\ 1)'

A y«"
Î?/(I,/)'

(5)

le produit infini étant absolument convergent.
On trouvera dans notre article « On some sets of pairs of positive

integers »1] (du haut de la page 272 à la fin du paragraphe 3.2.5) la
démonstration, sous les mêmes hypothèses, de (4) et de la formule que
donne (5) en y prenant wx w2 1. On verra immédiatement quelle
petite modification de la démonstration permet d'obtenir (5) avec w1 et

w2 quelconques satisfaisant à We wx Die w2 1.

Remarquons que les hypothèses 1° et 2° sont satisfaites en particulier
si l'on a

/(2r, 1) 0 pour tout r > 1 et /( 1, 2S) 0 pour tout s > 1.

Le facteur correspondant à p 2 dans le produit infini au second

membre de (5) est alors égal à 1, et (5) s'écrit

z g{m, ri)

m,n > 1 m n
n

p> 2

f(pj,Pkï
j,k>0 P

jWi+k\V2
y fU>>, iy

j 0
y fihpV
uh pkWï

C'est ce cas particulier que nous utiliserons.

2.4. Nous utiliserons aussi la remarque immédiate suivante :

Soit / une fonction de 9JÎ2 et soient fl et/2 les fonctions de 30t2

déterminées par
f{pr,p")

fi(pr,Ps)

et

pour r et s > 0 et r + s > 0.

Alors on a

0 si p 2,

0 si p > 2,

f{2\T) sip 2,

1) Journal of Number Theory, 1 (1969), p. 261-279.
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