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SUR LES FONCTIONS MULTIPLICATIVES
DE PLUSIEURS ENTIERS

par Hubert DELANGE

1. INTRODUCTION

Le résultat suivant a été conjecturé par Wirsing et démontré par
G. Halasz V.

Soit f une fonction arithmétique multiplicative satisfaisant a
| f(n) | < 1 pour tout ne N *.

L’une des deux circonstances suivantes a lieu :

1
(a) f posséde une valeur moyenne nulle (autrement dit, — ), f(n) tend vers

n<x

- zéro quand x tend vers - o).

(b) Il existe une constante complexe non nulle C, un nombre réel a et une

fonction complexe L définie sur R™ et satisfaisant a
|L ()| =1 pour tout te R*
. L(4)
et lim ——— = 1 pour tout A > 0,
t—>+ oo L (t)

la limite étant uniforme sur tout intervalle fermé contenu dans 10,4 oo,
tels que ’on ait pour X tendant vers + oo

— Z f(n) = Cx'* L (log x) + o [1]. (1)

X n<x

Nous nous proposons ici d’étendre ce résultat aux fonctions multiplica-

tives de plusieurs entiers.

1.1. Nous désignons par &/, I'ensemble des fonctions réelles ou complexes

de g entiers strictement positifs.

1) WirsING: ,,Das asymptotische Verhalten von Summen i{iber multiplikative

- Funktionen. II“, Acta Math. Acad. Sci. Hung., 18 (1967), p. 411-467.

G. HaLAsz: ,,Uber die Mittelwerte multiplikativer zahlentheoretischer Funktionen®,

Acta Math. Acad. Sci. Hung., 19 (1968), p. 365-403.
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Nous. disons que la fonction f de 7, est « multiplicative » si 'on a
f(,1,.,1)=1
et f (nlnlia nén;, sees n;n;) - f (n; > né: uen g n;]) ,f (n’;a I’Z;, o5y n;) lorsque
(nlnz...nq, nlnz...nq) = ] 1).

Nous désignons par M, I'ensemble des fonctions de &/, qui sont
multiplicatives.

Une fonction de I, est complétement déterminée par les valeurs
f(p, p, ..., p"), ol p parcourt I'ensemble des nombres premiers et
[ri, 72, ..., 7] I'ensemble des systtmes de g entiers > 0 non tous nuls.
Ces valeurs peuvent d’ailleurs étre choisies arbitrairement.

Nous appelons « valeur moyenne » de la fonction /' de 7, la limite de

Z f(nla Aoy eney nq)
Xl X2 coe Xq nlel
ng < x9
ng < Xq
lorsque x,, x,, ..., x, tendent vers -+ oo indépendamment les uns des autres,
s1 cette limite existe et est finie.

Lorsque f posside une valeur moyenne, nous désignons celle-ci par

M (f).
1.2. Ceci dit, on a le résultat suivant:

THEOREME 1: Soit f une fonction de M, satisfaisant a [f(nl, Ryyeeey M) [ <1
quels que soient ny, n,, ..., n, e N ¥,

Une des deux circonstances suivantes a lieu :

(a) f posséde une valeur moyenne nulle ;

(b) Il existe une constante complexe non nulle C, des constantes réelles
ay, ay, ..., a, et des fonctions complexes Ly, L,, ..., L, définies sur R™
et satisfaisant a
|L; ()| = 1 pour tout te RT

_ L; (/)
et lim
t— +x L_] (t)

les limites étant uniformes sur tout intervalle fermé contenu dans 10, + oo,
telles que I’on ait quand X, X,, ..., X, tendent vers - oo indépendamment

= 1 pour tout /. > 0(j=1, 2, ..., q),

les uns des autres

1) Cf H. DEeLANGE, « Sur les fonctions de plusieurs entiers strictement positifs »,
L’Enseignement Mathématique, 15 (1969), p. 77-88.
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1
Z f(nl, Hoy eeny nq) B (2)
X1 x2 cee xq z;i;c;
ng < xgq

= Cx;" x," ... x, L,(log xy) ... L,(log x,) + o [1]

Nous démontrerons ce résultat en nous plagant dans le cas ou g = 2.
Le lecteur verra facilement comment la démonstration doit étre modifiée
pour traiter le cas ol ¢ > 2.

Pour simplifier I’écriture, nous remplacerons n; et n, par m et n et
x, et x, par x et y.

En restant dans le cas ou g = 2, nous préciserons — comme on peut
le faire pour le résultat de Halasz — dans quel cas on a chacune des
circonstances (a) et (b).

De plus, nous donnerons des théorémes fournissant des conditions
nécessaires et suffisantes pour qu’une fonction f de I, satisfaisant a

| f(m,n)| <1 quels que soient m et n e N *
possede une valeur moyenne non nulle, ou pour que

1
— ), f(m,n)

XY m<x
n<y

tende vers une limite lorsque x et y tendent vers -+ oo avec un rapport fixe
quelconque, cette limite étant indépendante de la valeur du rapport.

Ici encore, le cas ou g = 2 n’est pas essentiellement différent du cas ou
q > 2.

Enfin, nous indiquerons deux résultats particuliers intéressants. -

1.3. 11 est entendu une fois pour toutes que, tout au long de cet article, la
lettre p représente toujours un nombre premier. Les lettres m, n, d, j, k, r, s
représentent des entiers; m, n, d sont toujours des entiers > 1.

Une somme qui ne contient aucun terme est considérée comme nulle,
et un produit qui n’a aucun facteur est considéré comme égal a 1.

2. PRELIMINAIRES

2.1. Il nous est utile de donner plus de précisions sur les résultats de Halasz.
f étant fonction arithmétique multiplicative satisfaisant a
|f(m)| <1 pour tout n > 1,

Halasz montre d’abord qu’il existe au plus un u réel tel que I’on ait
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