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SUR LES FONCTIONS MULTIPLICATIVES
DE PLUSIEURS ENTIERS

par Hubert Delange

1. Introduction

Le résultat suivant a été conjecturé par Wirsing et démontré par
G. Halâsz x).

Soitf une fonction arithmétique multiplicative satisfaisant à

| f(n) | < 1 pour tout ne N *.

L'une des deux circonstances suivantes a lieu :

(a) f possède une valeur moyenne nulle (autrement dit, — ^ f (ri) tend vers
X n< x

zéro quand x tend vers + oo).

(b) Il existe une constante complexe non nulle C, un nombre réel a et une

fonction complexe L définie sur R+ et satisfaisant à

| L (t) | 1 pour tout t g R+

L (At) „et lim 1 pour tout À > 0,
t -» + oo L (t)

la limite étant uniforme sur tout' intervalle fermé contenu dans ]0,+oo[,
tels que Von ait pour x tendant vers + oo

| -X fin) CxiaL(\ogx) + o[l]. (1)
X n<x

| Nous nous proposons ici d'étendre ce résultat aux fonctions multiplicatives

de plusieurs entiers.

1.1. Nous désignons par séq l'ensemble des fonctions réelles ou complexes
j de q entiers strictement positifs.
i

j x) Wirsing: „Das asymptotische Verhalten von Summen über multiplikative
j Funktionen. II", Acta Math. Acad. Sei. Hung., 18 (1967), p. 411-467.

j G. Halâsz: „Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen",
1 Acta Math. Acad. Sei. Hung., 19 (1968), p. 365-403.
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Nous, disons que la fonction / de sé
q

est «multiplicative» si l'on a

/(1,1,..., 1)= 1

et / (rtj/ii ,n'2n2, nqna) f (nl9n2s / («i, n2, lorsque
(n1n2...nq9 n[n2...nq) 1 1}.

Nous désignons par l'ensemble des fonctions de sé
q qui sont

multiplicatives.
Une fonction de 9Jlq est complètement déterminée par les valeurs

f(pr\pr2,...,prq), où p parcourt l'ensemble des nombres premiers et

[rl9 r2, rq] l'ensemble des systèmes de q entiers > 0 non tous nuls.
Ces valeurs peuvent d'ailleurs être choisies arbitrairement.

Nous appelons « valeur moyenne » de la fonction / de séq la limite de

1

X /(" i>n2,.:,nq)
x1 x2 ni*xi

"2 ^ -x2

nq ^ xq

lorsque xl9 x2, xq tendent vers +oo indépendamment les uns des autres,
si cette limite existe et est finie.

Lorsque / possède une valeur moyenne, nous désignons celle-ci par
M {f\
1.2. Ceci dit, on a le résultat suivant:

Théorème 1 : Soit f une fonction de 9Jlq satisfaisant à |/ (nl9 n2, nq) | < 1

quels que soient n1, n2, nq e N *.

Une des deux circonstances suivantes a lieu :

(a) /possède une valeur moyenne nulle ;

(b) Il existe une constante complexe non nulle C, des constantes réelles

a1; a2, aq et des fonctions complexes L1? L2, Lç définies sur R+

et satisfaisant à
I Ly (t) | 1 pour tout t g R+

L / (/.t)
et lim 1 pour tout A > 0 (j 1, 2, q),

f^ + x Lj (t)

les limites étant uniformes sur tout intervalle fermé contenu dans ]0, + oo [,

telles que Von ait quand xl5 x2, xq tendent vers -fco indépendamment
les uns des autres

x) Cf H. Delange, « Sur les fonctions de plusieurs entiers strictement positifs »,
L'Enseignement Mathématique, 15 (1969), p. 77-88.
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X /(«i, n2, ..,,nq) (2)
X2 "1 ^*1

"2 ^ *2

nq<xq

Cxxiai x2ia2... x^fl« Li (log Xi)... Lfl(log xq) + 0 [1]

Nous démontrerons ce résultat en nous plaçant dans le cas où q 2.

Le lecteur verra facilement comment la démonstration doit être modifiée

pour traiter le cas où q > 2.

Pour simplifier l'écriture, nous remplacerons n1 et n2 par m et n et

xx et x2 par x et y.
En restant dans le cas où q — 2, nous préciserons — comme on peut

le faire pour le résultat de Halâsz — dans quel cas on a chacune des

circonstances (a) et (b).
De plus, nous donnerons des théorèmes fournissant des conditions

nécessaires et suffisantes pour qu'une fonction / de 2R2 satisfaisant à

| (m, n) | < 1 quels que soient m et n e N *

possède une valeur moyenne non nulle, ou pour que

— X «)
xy m < x

n<y

tende vers une limite lorsque x et y tendent vers + oo avec un rapport fixe

quelconque, cette limite étant indépendante de la valeur du rapport.
Ici encore, le cas où q 2 n'est pas essentiellement différent du cas où

q > 2.

Enfin, nous indiquerons deux résultats particuliers intéressants.

1.3. Il est entendu une fois pour toutes que, tout au long de cet article, la
lettre p représente toujours un nombre premier. Les lettres m, n, d, y, L, r, s

représentent des entiers; m, n, d sont toujours des entiers > 1.

Une somme qui ne contient aucun terme est considérée comme nulle,
et un produit qui n'a aucun facteur est considéré comme égal à 1.

2. Préliminaires

2.1. Il nous est utile de donner plus de précisions sur les résultats de Halâsz.

/ étant fonction arithmétique multiplicative satisfaisant à

\f(n) | <1 pour tout n > 1,

Halâsz montre d'abord qu'il existe au plus un u réel tel que l'on ait
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