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ﬁ L’Enseignement mathém,. t. XVI, fasc. 3-4.

SUR LES FONCTIONS MULTIPLICATIVES
DE PLUSIEURS ENTIERS

par Hubert DELANGE

1. INTRODUCTION

Le résultat suivant a été conjecturé par Wirsing et démontré par
G. Halasz V.

Soit f une fonction arithmétique multiplicative satisfaisant a
| f(n) | < 1 pour tout ne N *.

L’une des deux circonstances suivantes a lieu :

1
(a) f posséde une valeur moyenne nulle (autrement dit, — ), f(n) tend vers

n<x

- zéro quand x tend vers - o).

(b) Il existe une constante complexe non nulle C, un nombre réel a et une

fonction complexe L définie sur R™ et satisfaisant a
|L ()| =1 pour tout te R*
. L(4)
et lim ——— = 1 pour tout A > 0,
t—>+ oo L (t)

la limite étant uniforme sur tout intervalle fermé contenu dans 10,4 oo,
tels que ’on ait pour X tendant vers + oo

— Z f(n) = Cx'* L (log x) + o [1]. (1)

X n<x

Nous nous proposons ici d’étendre ce résultat aux fonctions multiplica-

tives de plusieurs entiers.

1.1. Nous désignons par &/, I'ensemble des fonctions réelles ou complexes

de g entiers strictement positifs.

1) WirsING: ,,Das asymptotische Verhalten von Summen i{iber multiplikative

- Funktionen. II“, Acta Math. Acad. Sci. Hung., 18 (1967), p. 411-467.

G. HaLAsz: ,,Uber die Mittelwerte multiplikativer zahlentheoretischer Funktionen®,

Acta Math. Acad. Sci. Hung., 19 (1968), p. 365-403.
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Nous. disons que la fonction f de 7, est « multiplicative » si 'on a
f(,1,.,1)=1
et f (nlnlia nén;, sees n;n;) - f (n; > né: uen g n;]) ,f (n’;a I’Z;, o5y n;) lorsque
(nlnz...nq, nlnz...nq) = ] 1).

Nous désignons par M, I'ensemble des fonctions de &/, qui sont
multiplicatives.

Une fonction de I, est complétement déterminée par les valeurs
f(p, p, ..., p"), ol p parcourt I'ensemble des nombres premiers et
[ri, 72, ..., 7] I'ensemble des systtmes de g entiers > 0 non tous nuls.
Ces valeurs peuvent d’ailleurs étre choisies arbitrairement.

Nous appelons « valeur moyenne » de la fonction /' de 7, la limite de

Z f(nla Aoy eney nq)
Xl X2 coe Xq nlel
ng < x9
ng < Xq
lorsque x,, x,, ..., x, tendent vers -+ oo indépendamment les uns des autres,
s1 cette limite existe et est finie.

Lorsque f posside une valeur moyenne, nous désignons celle-ci par

M (f).
1.2. Ceci dit, on a le résultat suivant:

THEOREME 1: Soit f une fonction de M, satisfaisant a [f(nl, Ryyeeey M) [ <1
quels que soient ny, n,, ..., n, e N ¥,

Une des deux circonstances suivantes a lieu :

(a) f posséde une valeur moyenne nulle ;

(b) Il existe une constante complexe non nulle C, des constantes réelles
ay, ay, ..., a, et des fonctions complexes Ly, L,, ..., L, définies sur R™
et satisfaisant a
|L; ()| = 1 pour tout te RT

_ L; (/)
et lim
t— +x L_] (t)

les limites étant uniformes sur tout intervalle fermé contenu dans 10, + oo,
telles que I’on ait quand X, X,, ..., X, tendent vers - oo indépendamment

= 1 pour tout /. > 0(j=1, 2, ..., q),

les uns des autres

1) Cf H. DEeLANGE, « Sur les fonctions de plusieurs entiers strictement positifs »,
L’Enseignement Mathématique, 15 (1969), p. 77-88.
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1
Z f(nl, Hoy eeny nq) B (2)
X1 x2 cee xq z;i;c;
ng < xgq

= Cx;" x," ... x, L,(log xy) ... L,(log x,) + o [1]

Nous démontrerons ce résultat en nous plagant dans le cas ou g = 2.
Le lecteur verra facilement comment la démonstration doit étre modifiée
pour traiter le cas ol ¢ > 2.

Pour simplifier I’écriture, nous remplacerons n; et n, par m et n et
x, et x, par x et y.

En restant dans le cas ou g = 2, nous préciserons — comme on peut
le faire pour le résultat de Halasz — dans quel cas on a chacune des
circonstances (a) et (b).

De plus, nous donnerons des théorémes fournissant des conditions
nécessaires et suffisantes pour qu’une fonction f de I, satisfaisant a

| f(m,n)| <1 quels que soient m et n e N *
possede une valeur moyenne non nulle, ou pour que

1
— ), f(m,n)

XY m<x
n<y

tende vers une limite lorsque x et y tendent vers -+ oo avec un rapport fixe
quelconque, cette limite étant indépendante de la valeur du rapport.

Ici encore, le cas ou g = 2 n’est pas essentiellement différent du cas ou
q > 2.

Enfin, nous indiquerons deux résultats particuliers intéressants. -

1.3. 11 est entendu une fois pour toutes que, tout au long de cet article, la
lettre p représente toujours un nombre premier. Les lettres m, n, d, j, k, r, s
représentent des entiers; m, n, d sont toujours des entiers > 1.

Une somme qui ne contient aucun terme est considérée comme nulle,
et un produit qui n’a aucun facteur est considéré comme égal a 1.

2. PRELIMINAIRES

2.1. Il nous est utile de donner plus de précisions sur les résultats de Halasz.
f étant fonction arithmétique multiplicative satisfaisant a
|f(m)| <1 pour tout n > 1,

Halasz montre d’abord qu’il existe au plus un u réel tel que I’on ait
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1 .
Z;}{l—me [f(»p~ ™} < +o0? 3)

On a ensuite les résultats suivants:

1. S’il n’existe aucun u réel tel que I'on ait (3), f posséde une valeur
moyenne nulle.

2. Supposons maintenant qu’il existe un u réel tel que ’on ait (3), soit u,.
Alors,

a. Si 27" £(2") = —1 pour tout r > 1, f posséde une valeur moyenne
nulle.

b. Si 27 f(2") # —1 pour au moins un r > 1, on a (1) avec a = u, et

1 Gon
Ly (t) = exp {l’ 2, Im[f(p)p “‘"]}-

p<et P

2.1.1. Ajoutons que, lorsque I’on est dans le cas 2 avec u, = 0, c’est-a-dire
lorsque 'on a

1
Zl—) {1-%Re f(p)} < + o0,

on a pour x tendant vers 4o

Lz o= (1) 5522+ om

n<x P<SXx

Ceci est une conséquence inmédiate d’un théoréme que nous avons
établi ailleurs 2.

2.2. Il nous est utile aussi de rappeler quelques notions et quelques résultats
élémentaires concernant les fonctions de 7 ,, que nous avons indiqués dans
Iarticle cité au paragraphe 1.1 (et qui se généralisent naturellement a o7 ).

2.2.1. Dans &/, on définit ’opération de convolution de la fagon suivante:

f « g est la fonction A définie par

- m n
h(m:n) dZ/: f(dladZ)g<d d)
1/m 1

da/n

La convolution est commutative et associative.

1) 11 est clair que, pour chaque p, 1 — Re [f(p)p~#] > 0.
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2.2.2. fet g étant deux fonctions de <7, et w, et w, deux variables complexes,
si les séries doubles

f(m, n) ot Z g(m, n)

: w w
mmn=>1 m*in"? mnp>1 M Lg®

sont absolument convergentes pour Re w; = a et Re w, = B, il en est de
méme de la série double
h (m, n)

wg

ou h=f,g

mn=1 m"n

et on a pour Rew; = aet Rew, = f

h(m,n_):< v f(mn))( > g(m,n>>.

mun=1 m"t n"? mn=1 m*in"? mup=1 m** n™?

2.2.3. Toute fonction f de 7, telle que (1, 1) # O peut se mettre sous la
forme

f:: g « h>
ol & (m,n) = f(m, 1) f(1,n) et g satisfait a
g(m,1) =0 pourm > 1 et g(1l,n) =0 pourn > 1.

Si f appartient & 9,, les fonctions g et 4 appartiennent aussi a M.

2.3. Indiquons aussi le résultat suivant:

Soit f une fonction de M, satisfaisant & | f(m, n) | < 1 quels que soient
metn > 1.

Supposons que
1° On n’a pas
|f(2, 1) ] =letfQ2, 1) = (=112, 1) pour toutr > 1;
2° On n’a pas '
/1,2 | =1etf(,2% = (=1 f(1, 2)° pour tout s > 1.
Alors la fonction g considérée au paragraphe 2.2.3 satisfait a

g (m, n
mn>1 mn
de sorte que la série double
g (m, n)

Wi W
mu=1min"?

est absolument convergente pour Rew; = Rew, = 1. -
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De plus, on a pour Rew,; = Rew, =1

g (m, n) B

mun>1 m*t p*?

f(, p SfELD A 0H
H {[ j,kZ;O pjw1+kw2]/|: j§=;0 pjw1 ] I: kZO pkw2 ]}’ (5)

le produit infini étant absolument convergent.

On trouvera dans notre article « On some sets of pairs of positive
integers » ¥ (du haut de la page 272 a la fin du paragraphe 3.2.5) la
démonstration, sous les mémes hypotheses, de (4) et de la formule que
donne (5) en y prenant w, = w, = 1. On verra immédiatement quelle
petite modification de la démonstration permet d’obtenir (5) avec w, et
w, quelconques satisfaisant a Re w; = Rew, = 1.

Remarquons que les hypothéses 1° et 2° sont satisfaites en particulier
st 'on a

f@,1)=0pourtoutr >1 et f(1,2° =0 pour touts > 1.

Le facteur correspondant 3 p = 2 dans le produit infini au second
membre de (5) est alors égal a 1, et (5) s’écrit

gmn) VA2 LD e, ph
m,nZz1 m¥in": pI;IZ {[ j,k2>_:0 pJ'W1+kW2-J/|: jZ«O pjw‘ :H:kgo pka :I}

C’est ce cas particulier que nous utiliserons.

2.4. Nous utiliserons aussi la remarque immeédiate suivante:

e R

Soit f une fonction de I, et soient f; et f, les fonctions de MW, déter-
minées par
[ f(p,p®) sip > 2,
fi(p'p°) =

| 0 st p = 2, ‘
et
0 sip > 2,

f2(p" p°) =
f@2,2%) sip=2,
pourrets >0etr+4s>0. '
Alors on a

f=F1 /o

1y Journal of Number Theory, 1 (1969), p. 261-279.
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3. DEMONSTRATION DU THEOREME 1 DANS LE CAS OU ¢ = 2.

Remarquons d’abord que, d’apres les résultats de Halasz, si f est une
fonction de M, satisfaisant a | f(m, n) l < 1 quels que soient m et n > 1,
il existe au plus un u réel tel que

] .
Z[; {1=Re [f(p, Dp™ ™} <

et au plus un u réel tel que

! |
X o= [f(Lp)p " < +eo

Ceci dit, nous allons maintenant démontrer le théoréme 1 dans le cas
ou g = 2, sous la forme plus précise suivante:

Soit f une fonction de M, satisfaisant a l f(m, n) l < 1 quels que soient
metn > 1.

1. Sil’on a l'une au moins des conditions

1 | |
ZE {1-Re[f(p, 1) p™™} = 40 pour tout u réel

et
1 .
Z; {1-Re[fU,p)p~™™} = +00 pour tout u réel,

f posséde une valeur moyenne nulle.

2. S’il existe aq et a, réels tels que

1 )
Z}B {1-Re [f(p, Dp7™]} < + 0
et

1 .
ZI—) {1-Re [f(1L,p)p™™]} < + oo,

il y a deux cas possibles :
Ou bien

f(27,2Y f(37,39
(j,kz?_O 2j(1+ia1)+k(l+ia2) j,kzZO 3j(1+ia1)+k(1+ia2)> = Oa

et alors f posséde une valeur moyenne nulle.
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Ou bien
f(2,29 f@3,39
( ) 2J(1+ia)+k(1+iag) ) 3J(1+181) +k(1 +i02) # 0,

jk=0 k=0

et alors on a quand X et y tendent vers + oo indépendamment I’un de I’autre

1

- Y flmm) = C x'"1 y*2 L (log x) L,(log y) + 2 [1], (6)
Ty

ou C est une constante complexe non nulle et L, et L, sont les fonctions
définies sur R* par

1 .
Ly (t) = exp {i Zt— Im[f(p,Dp ’“1]}
et
1 »
L, (t) = exp {l’ Zt— Im [f(1,p)p "’2]},
qui satisfont a

|L; ®)| =1 pour tout te R*

L (At
et lim A1)
t—+ oo Lj(t)

=1 pourtout A >0 (j=1ou?2),
les limites étant uniformes sur tout intervalle fermé contenu dans 10, 4 ool.

3.1. On peut d’abord écrire
f=I1xS2 (7

ou f; et f, sont définies comme il est dit au paragraphe 2.4.
Définissons maintenant les fonctions arithmétiques 4, et h, par

hy(m)=fi(m 1) et hy(n=s ({1, n).
On voit que A, et 7, sont multiplicatives et que 'on a

f(p, Dsip > 2,
hy (p7) = (®)
0 sip=2,
et
[f(l,p’) sip > 2,

hy (p") = ®)
1 0 sip=2.
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De plus, d’aprés ce qui a été dit au paragraphe 2.3., on a

fi=281xh (10
ol A (m,n) = h, (m)h, (n) et g, est une fonction de M, satisfaisant a
mn=1 mn

et, pour Rew,; = Rew, =1,

g1 (m7 n) -
mn>1 m*t p*?

1 e i DR AP
pl;lz {‘: 2;‘ fl(wlj‘L ’i“)]/ l:j;O wal ][;0 qkw2p ]} ’

- Clest-a-dire
g1 (m> n) L

mn=1 m" n"?

F@L P e 0 D e £ (LY
pljz {[j’:éopfmm] / L;O P }LZO o ]} (12)

le produit infini étant absolument convergent.

(7) et (10) donnent f =g, h, ol g = f, 4 ;-
D’apres ce qui a été dit au paragraphe 2.2.2, il résulte de (11) et de ce que

o mmy| o |22
‘ m,nZZI mn B j,kXZ:O 2L = T,
' que ’'on a
| g m, n) | < 4o

m,n=> 1 mn
| et, pour Rew, = Rew, =1,

= (n o) (g aim)

mn=1m"'n mn=1 M"'n n=1 m*tn

ce qui donne, compte tenu de (12),

g (m, n)
mn=1 m"1 1™

i

i
t

£ 29 S e f@L D £ 29
{f’kgo ij‘”w‘“’} pgz %[f,kzzop"w“"‘“]/ LZ‘O p™ :]LZO p ]}

ﬁ
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En définitive, on a le résultat suivant:
h, et h, étant les fonctions de M, déterminées par (8) et (9), on a
f: g ES h:
ou hA(m,n) =h, (m)h, (n) et g est une fonction de M, satisfaisant a

| g (m, n) |

mn=>1 mn

< 4o (13)

et, pour Rew; = Rew, =1,

glmm _

mn>1 m»t n™?

f(27,29 F@L Y] TS 0 D2 £, P9 |
{j,l;Z 2jw1 +kw2} pl;[2 {[j,kzzo W]/[JZZO pjw1 :”:kZO pkw2 ]}s (14)

le produit infini étant absolument convergent.

3.2. Compte tenu de ce que h(m,n) = hy, (m) h, (n), ’égalité =g, h

s’écrit
m n
f(ma n) - Z g (d19 d2) hl (_> h2 (”——)
d1/m dl dz

dgo/n
quels que soient m et n > 1.

Ceci donne, pour x et y > 1,

T =3 emnm(m) 0

ou Hy et H, sont les fonctions définies sur I'intervalle [1, +oo[ par
Hy(x)= ) hy(m) et Hy(x)= ) hy(®.

msx n<x

Il est clair que 'on a
|Hy (x)| <x et |H,(x|<x pourtoutx > 1. (16)
3.3. Ceci dit, supposons d’abord que ’on ait

1 :
ZI; {1I-Re[f(p, Dp™"]} = +©
pour tout u réel.

11 en résulte que

1 .
Y. - {1=Re [h, (p) p~™} = + oo pour tout u réel,
14




— 229 —

ce qui entraine, d’aprés ce qui a été dit au paragraphe 2.1, que la fonction A,

1 ,
possede une valeur moyenne nulle. Autrement dit, — H, (x) tend vers zéro
% X

quand x tend vers + o0

.~ Mais (15) peut s’écrire
1 , g(m,n) m x\ n y
— Y flm,n) = ) .—)—CH1<-—>.}H2<).

XY m<x m<x M~A m n
n=<y nsy

D’apres (16), le terme général de la somme au second membre est de
| g (m, ) |

mn
De plus, ce terme général tend vers zéro quand x et y tendent vers -+ oo

module au plus égal a

. m X ,
puisque — H, <~) tend vers zéro.
| x

m;
Compte tenu de (13), il résulte de 1a que
1 ,
—_— m,
xy:gngx ’ﬁ
n<y

- tend vers zéro quand x et y tendent vers -+ oo. Autrement dit, £ posséde
| une valeur moyenne nulle.

On voit de méme que f posséde une valeur moyenne nulle si I'on a
1 .
Z; {1-Re[f(,p)p~ ™} = 4+ pour tout u réel.

3.4. Supposons maintenant qu’il existe a, et a, réels tels que
:

| 1 .
| 2o U=Re[f(p. )p™™]} < Fo0

-

et
3

Bl

1 R
Z; {1-Re [f(1,p) p™™ ]} < +c0.

Il en résulte que

1 |
ZE) {1-=Re[hy (P p™™]} < +o0

1 :
Z;) {1-Re [h, (p) p™™]} < 40,
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et, d’aprés ce qui a été dit au paragraph 2.1, on a quand x tend vers oo

1 .
. H, (x) = C;x** K, (log x) + o [1] (17)

et

1 , .
;c H, (x) = C,x'** K, (log x) + o [1], (18)

ol C; et C, sont deux constantes complexes non nulles et, pour ¢t > 0,

1 .
K, (@)= exp{i Y, —Im[hy (p)p*"”]}

p<et P

et

1 )
K, () = Cxp{i Y, —Imlh, (p)p““’?]}-

p=<et

Si I’on pose

— iilm [f2, 1) 2‘“’1]}
C, = Crexp{ — glm [f(1,2) 2“"“2]}, {

et, pour ¢t > 0,

et

R )

1 .
Li(t) = exp{i 2 I;Im [/ (P, l)p“‘“]}

1 ;
i ), —Im [f(l,p)p—"”]},

p<et D
on voit que I’on a pour ¢ > log 2
CiKi (1) =CyLi(t) et CK,(t)=C,L, (1),

de sorte que (17) et (18) peuvent s’écrire

H,y (x) = Cy x' " L, (log x) + o [1] (19)
et
H, (x) = C, x**® L, (log x) -+ o [x]. (20)
C, et C, sont encore des constantes complexes non nulles et, comme on a
K () . K, ()

1 pour tout 4 > 0,

lim 1m =
t-+o00 Ky (2) t»+o0 Ky (1)

les limites étant uniformes sur tout intervalle fermé contenu dans O, + oo,
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‘on a aussi

L, U-t) . Ly (A9
lim lim
t~+a L1() t-+w Ly ()

les limites étant uniformes sur tout intervalle fermé contenu dans ]C, 4-co[.
Notons que ceci entraine

L, (logk L, (logk
lim —i—(—gg—-—)fz = lim —M == | pour tout £ > 0. (22)
X— + o0 L1 (lOg x) x— + oo L2 (log X)

=2 | pour tout 4 > 0, (21)

'3.4.1. Maintenant (15) donne pour x et y > 1

1
m,n
x ey T | (log ) L, (log ») gi( '~

X y
H,|—
g (m, n) <m> )
= L e ey N T X\ /p\ e
m m n
X y
L, (log —) L, (log —)
m n

Ly (logx) L,(logy)
Le terme général de la somme du second membre est de module au plus

oy by | g (m’ n) |
égala ————.
mn
De plus, il résulte de (19), (20) et (22) que ce terme général tend vers
g (m, n)
C, C, quand x et y tendent vers - co.

m Ltias y1+ia

Compte tenu de (13), ceci entraine que, lorsque x et y tendent vers 4o,
la somme tend vers

g (m, n)
C,C . .
1 2'“,'1221 I’}21+’a1 nl-}-mg’
de sorte que ’on a
1
- Y, f(m,n) = Cx'* y L, (logx) L, (logy) + o [1],
n<y

ou

_ g (m, n)

C=C G m;‘£1 m L Fiar , 1+iay’
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34.2. Si C = 0, ceci implique que f posséde une valeur moyenne nulle. i
On voit donc que, pour établir le résultat annoncé, il ne reste plus qu’a
montrer que I'on a |

» g (m, n)

1+ia; ) 1+ia

=0

mn>1 M
si, et seulement si,

£(27,2 £33
Z 5 J(1+ia) Tk(1 +ia) jkzzo 3 J(1+iap) +k(1 +iag) = 0.

jk=0

Compte tenu de (14), il suffit de montrer que

nll £, pH LD SO 0
pa2 j,kzopj(1+ia1)+k(1+ia2) jZO pj(1+ia1) kZ'o pk(l +iag) -

si, et seulement si,

f(37,39

jkzo 3 J(1+iap) +k(1+iaz) =

0.

Ceci résulte immédiatement de ce que tous les facteurs du produit
autres que celui qui correspond a p = 3 sont non nuls.
En effet, on a pour chaque p
(P, p* 1 1
(', p) < ¥ _ 1L

2
Jk20 gy ; k=0 . 1
jrkso pititia) tk(1+ia) j+k=o0 pi Tk (1——

Pour p > 3, ceci est { 1 et par suite

ACEY S N S NG
jiSo pittia) Th(ltiaz) B o pi(itian +k(i+ia) .
J k=0

4. AUTRES THEOREMES

11 est entendu une fois pour toutes que, dans tout ce qui suit, f est une
fonction de MM, satisfaisant & |/ (m, n) | <1 quels que soient m et n > 1.

Le théoréme démontré au chapitre précédent fournit immédiatement
des conditions nécessaires et suffisantes pour que f posséde une valeur
moyenne nulle, car il est clair que, lorsque 'on a (6), le module de
I’expression
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1
.;)—f zxf(m’ I’l)

y

= 3
IA 1A

tend vers | C| quand x et y tendent vers +co.
Nous nous proposons maintenant d’obtenir des conditions nécessaires

- et suffisantes pour que f posséde une valeur moyenne non nulle.

Nous chercherons aussi des conditions nécessaires et suffisantes pour

~ que P’expression

1
— Y. f(m, n)

XY m<x
n<y

' tende vers une limite lorsque x et y tendent vers 4 co avec un rapport fixe
 quelconque, cette limite étant indépendante de la valeur du rapport.

Compte tenu de la remarque faite plus haut sur le cas ou I’on a (6), on

- voit que ceci a lieu avec une limite nulle si, et seulement si, / posséde une
- valeur moyenne nulle. Il reste a traiter le cas d’une limite non nulle.

4.1. Remarquons d’abord que le produit infini

1 2 j, k
(-1} (£52)
p jk=0 D

est convergent si, et seulement si, la série

1

est convergente 1,

+ o ‘
1) Rappelons que le produit infini IT (1+#,) est dit convergent si
1

1o il a au plus un nombre fini de facteurs nuls;

2° le produit II (1+u,) tend vers une limite finie non nulle quand x tend vers + .
n<x
1+u,#0
Quant le produit infini est convergent, sa valeur est par définition la limite de

EI (1+u,) pour x tendant vers +w. Elle est nulle si, et seulement si, un au moins des
nsx

facteurs est nul.

. . . . +m
On voit facilement que, si la sériec X | u,|® est convergente, le produit infini
1

+ o0 + o
111 (1+u,) est convergent ou non en méme temps que la série X u,.
1

(Cf, par exemple, KNopp: Theorie und Anwendung der unendlichen Rehien).
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En effet, si ’'on pose

N o f(p, "
<1*5) ij:O pj+k - 1+up,

on voit que I'on a quand p tend vers +oo
1 1
= [f(p, )+ /1, p) — 2]+ 0[;5]-

La série X |u,|* étant convergente, puisque u, = Ol:—], le produit
4

infini IT (1+u,) est convergent si, et seulement si, la série X u, est conver-
gente, ce qui donne le résultat annoncé.
Ajoutons que le produit infini

1\? f(pf,p")>
1— — . ,
H( P) (j, o ptk

lorsqu’il est convergent, est nul si, et seulement si,

£, 2" 34, 3¢
(£.122)(2.222) -

J.k=0 J,k=0

v

car, pour p > 3,
£’ p" . S, p") 1
Z ——— # 0 puisque Z T
jk=o0 D jk=0 D
Jtk>0 (1 —_——
P

N

fom——y
N’
[V

4.2. Ceci dit, nous allons montrer d’abord que, pour que f possede une
valeur moyenne non nulle, il faut et il suffit que

1 1
1° Les séries Y. - [1— f(p, D] et Y, - [1— f(1, p)] soient convergentes;
P P

2° on ait( Y f(221~’;k2 )>( Y f_(g;_fz) # 0.

Jk=0 J,k=0

Plus précisément, nous établirons le théoreme suivant.

THEOREME 2: 1. Si f posséde une valeur moyenne non nulle, les séries

1 1
> —[l=f(p, D] et Y —[1 —f(l,p)] sont convergentes et on a
pP P

(24, 2k 37, 3k
(2,552 (5,52 #o @)

J,k=0 Jk=0
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1 1
II. Si les séries Y —[1 — f(p, )] et Y, -~ [1 — f(1, p)] sont convergentes,
p p

M (f) existe et est égale a la valeur du produit infini

I f(pf,p"))
] — — .
H( p) (f,;o piTE

(qui est convergent d’aprés ce que I'on a vu au paragraphe 4.1, et est nul
si, et seulement si, on a

j ok 3j’ 3k
(3.282)(520) o
jikzo0 2/ jk=o 3

4.2.1. Supposons d’abord que f posséde une valeur moyenne non nulle.
Il existe nécessairement a, et a, réels tels que I'on ait

1 .
Z;} {1=Re [f(p, Dp™""]} < + o0 24)

et

1 |
ZB {1-Re [f(1L,p)p~ "]} < +oo0, (25)

car, dans le cas contraire, f devrait posséder une valeur moyenne nulle.
Pour la méme raison, on a

f (2j, Zk) f(3j, 3k)
<jkz;0 2J(1+iay)+k(1+iag) Z 3J(1+iay) +k(1+iaz) # 0. (26)

J,k=0

On a donc (6).
I1 résulte de (6) que, lorsque x et y tendent vers oo,
Cx'ty'® L, (log x) L, (log y)

tend vers M (f).

Ceci entraine que, quels que soient A et u > 0,

C (2%)™ (up)'** L, (log Ax) L, (log )

~ tend aussi vers M (f).

Mais le quotient de la deuxieme expression par la premiére tend vers
)vial #iag.

On doit donc avoir

At =1 quels que soient A et i > 0,

ce qui nécessite a; = a, = 0.

L’Enseignement mathém,. t. XVI, fasc. 3-4. 16
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Alors (26) donne (23), (24) et (25) donnent

1
Z]; {1-=Re [f(p, D]} < +0 27)

et
1
Zl;{l—‘ﬁe [f(L, P} < +oo, (28)

et on voit que, quand x et y tendent vers + oo indépendamment 1'un de
I’autre,

M (f)
L, (logx)L, (logy) tend vers

(qui est de module 1 puisque | L; (log x) L, (logy) | = 1 pour x et y > 1).
Alors, a tout ¢ > 0 et < 2n—4 correspond X, >2 tel que, pour
x/7 xr/, yl et y// />/ Xe,
R
| Ly (log ") L, (log ") = Ly (log x) L (log ) | < 2 sin -,
En prenant y' = y”" = X, on voit que 'on a
€
| L, (log x") — Ly (log x) | <2 sinz1 pour x" et x” > X, (29)
et, en prenant x’ = x” = X, on voit que 'on a
&
|L, (log y") — L, (log y') | <2sin ;, pour yety >X,. (30)

Si I’on pose, pour x et y > 1,

1
Ay (x)= ) —Im[f(p, V]

p<x

et

1
A (y) = ) ~Im[f(1,p)),

p<y P

(29) et (30) s’écrivent

£

g
| exp [id; (x")] — exp [id; (x))] | <2 sin , pour xetx" > X, (31)
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et

&
| exp [id, ()] — exp [id, (V]| <2sin7  poury' ety > X, (32)

En prenant x’ = X, et x" = x, on déduit de (31) que, pour x > X,

€
A, (x) appartient a l'un des intervalles [4, (X,) 4 2kn — 5 A (X)) +

€
2kn + i]’ ou keZ.

La différence de deux nombres appartenant & deux de ces intervalles
distincts est au moins égale a 2n — & > 3.
Comme on a ¢videmment

| A, (x") — A; (x) | <3 pour 2<x <x"<x' +2

I'intervalle auquel appartient 4, (x) est le méme pour tous les x > X, que
pour x = X,, c’est-a-dire celui qui correspond a k = 0.

g .
On a donc |4, (x) — 4, (X)) | <§ pour tour x > X,, et par suite

|4, (x") — 4, ()| <& pour x'etx’ >X,.

11 résulte de 1a que A4, (x) tend vers une limite finie quand x tend vers

1
+ 00, c’est-a-dire que la série Y — Im [ f(p, 1)] est convergente.
p

On déduit de méme de (32) que 'on a
| 4, (b)) — 4, (V)| <e  pour y ety =X,

et il en résulte que 4, (y) tend vers une limite finie quand y tend vers + oo,
1

c’est-a-dire que la série Y. ~ Im [ £ (1, p)] est convergente.
p

Avec (27) et (28), ceci montre que les séries

1 1 |
2oL =Ff(p, D] et Y-[1 —f(,p)]
p p
sont convergentes.
La premiére partie du théoréme 2 est ainsi démontrée.

4.2.2. Supposons maintenant que les séries

1 1
“[1 = f(p, 1 “[ -1,
Zp[ J(p, 1] et Zp[ 1@, p

solent convergentes.
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Ceci entraine que I’on a (27) et (28). Autrement dit, on a (24) et (25)
aveca; = a, = 0.

Sil’on a
f(2,29 f(37,39
<j’k2210 Ntk j,kzz:o itk | T 0.

f posséde une valeur moyenne nulle.
Si au contraire on a (32), on a quand x et y tendent vers oo indé-
pendamment 1'un de I’autre

1

" Z f(m,n) = CL, (logx) L, (logy) -+ o[1], (33)

ou C est une constante complexe non nulle,

1
Ly (1) = exp {l'z;)[m [/ (p, DI}

et
1
L, (t) = exp {i;t; Im [ f(1, p)]}.

Les séries
1 1
Z[; Im{f(p, D] et ZE Im[f(, p)]

étant convergentes, L, (¢) et L, (¢) tendent vers des limites finies, d’ailleurs
de module 1, lorsque ¢ tend vers +oo. Alors (33) montre que f posséde
une valeur moyenne (de module égal a C).

Pour achever la démonstration de la deuxieéme partie du théoréme 2,
il reste a montrer que M (f) est €gale a la valeur du produit infini

1\? F(p, "
1—- . )
H( P) (,-,,;o p Tk )

Pour cela, reportons-nous a la démonstration du théoréme 1 donnée
au chapitre 3.

Puisque I’on a (27) et (28), on est dans le cas considéré au paragraphe 3.4,
avec a, == a, = 0.

(19) et (20) donnent dans ce cas

1
N H;(x) = C L, (logx)+ o[l] (34)
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et

CH, ()= C, L, (ogx) + o [1] (35)

On sait que la constante C qui figure dans (6), réduit ici a (33), est
donnée par

g (m, n)
C=0C,C :
L2 m,;zl mmn
(33) peut donc s’écrire
1 g (m, n) ’
— 3. f(m,m) = Cy Cy{ ), L, (log x) L, (log ) + o [1],
XY m<x mn>1 MAN
n<y

et on voit que I’on a pour x tendant vers - oo

"1‘2' 2. f(n’l,n):_-Clcz< ¥ g (m, n)

m<x mn=>1 mn
n<x

)Ll (log x) L, (log x) + o [1]. (36)

Mais, d’aprés ce qui a été dit au paragraphe 2.1.1, on a quand x tend

et

vers oo

EHi x) = [] (1_1) [H— }joo i (,pr)] + o [1]

X p<x D r=1 j24

1 + o0 Jj
—1 11 (1—~)(Zf(p;”>+o[1]

2<p=x 4 Jj=0 4

1 h, (p"

;Hz (x) = pl;[x (1—~) [1+ Z (v ):I o [1]

- % 2<1:[s:c (1 _1;> <k§0f(p : )> [1]

En comparant avec (34) et (35), on voit que I’on a

CiLy(logx) = 4 [] (1—ﬂ><f“’;, ))+o[u (37)

2<p<x V% j=0

C,Ly(ogx) =3 ] (1_1>< - f(l’kpc)> + o [1]. (38)
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Les produits sont de module au plus égal & 1 car on a pour chaque p

+ o0 +
f(, 1) ° 1 1
)y <T 5=—7
=0 p’ i=op’ 1_}
p
et
SSAPH ]t 1
L | <X 5=
k=0 P k=0 p { — =
p

D’autre part, (14) donne

gmn) F, 2 1P
m,nzl>.1 mn N {j,kZ_:ZO 2j+k }p];[fl {[ j,éo pj+k :I/
WL 2 ra b
Pl
Jj=0 y4 k=0 V4
£, 24 £, P
L e
jk=0 2<p<x j.k=0 14 _
+ o j,l ~ +oo k
[Zf(p. )} zf(pp)]}+ -

=0 P’ | k=0

Avec (37) et (38), ceci montre que (36) peut s’écrire

Sz son=T(1-) (£ X80 vom oo

m<x pP<sx D J:k=0 14
n<x

ce qui donne le résultat voulu.
Remarquons en passant que la démonstration de (39) a utilisé unique-
ment le fait que 'on a (27) et (28).

4.3. Convenons maintenant de dire que f posséde une « valeur moyenne
faible » si ’expression

1
" >, f(m,n)

tend vers une limite quan& x et y tendent vers 0o avec un rapport fixe,
cette limite étant indépendante de la valeur du rapport. La valeur moyenne
faible de f sera la limite en question.

Il est clair que, si f posséde une valeur moyenne, elle posseéde aussi une
valeur moyenne faible égale a sa valeur moyenne ordinaire.
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Comme on I’a vu au début de ce chapitre, f posséde une valeur moyenne
faible nulle si, et seulement si, elle posséde une valeur moyenne nulle.

Nous allons montrer maintenant que, pour que f posséde une valeur
moyenne faible non nulle, il faut et il suffit que

1 .
1° laséried - [2 — f(p, 1) — f(1, p)] soit convergente;
p

Jj Nk Jj 1k

0 j, k=0

2° on ait <
i,

Plus précisément, nous établirons le théoréme suivant.

THEOREME 3: 1. S’il existe trois nombres strictement positifs distincts pq,

p, et ps tels que le rapport <10g —{)—3> / (log {)—2> soit irrationnel et tels que,

A P1 P1
pour j=1, j=2 et j =3, expression
1
——— Z f(m, f’l)
XY m<x
n<y

tende vers une méme limite non nulle quand x et y tendent vers oo avec

y , .
- = p.;? lg série
X J

1
25 [2 -F(p, D —f(1p)]

est convergente et on a (23).

1) On pourrait dire aussi qu’il faut et il suffit que le produit infini
1.2 J pk
p/ \ jkzo pitk
soit convergent et non nul.
%) Cette hypothése pourrait aussi se formuler de la facon suivante:

I1 existe trois couples de nombres strictement positifs (o, B), (o, By), (23, Bs) tels
que le déterminant

1 1 0 0
log o log B, 1 ry
log a, log B, 1 ry
log o, log 3, 1 r3

soit non nul quels que soient r,, r, et ry; € Z et ne satisfaisant pas & r; = r, = r,, et tels
que, pourj = 1,7 = 2 etj = 3, I’expression
1
— 2 f(m,n
XY m<x (
n<y

: n .. X
tende vers une méme limite non nulle quand x et y tendent vers + o« avec = = e .

(x . .
A r r r . - J
~La maniere dont le résultat se généralise pour les fonctions de I, ou qJ> 2, est
. visible sous cette forme.
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, | 1
II. Si la série Z]-; 2 —f(p, 1) — f(1,p)] est convergente, [’expression

1

XY m<x
n<y

tend vers la valeur du produit infini

1\? ', "
H<1_P> (iéo 2 )

lo log x
quand x et y tendent vers —+ oo de facon que les rapports 5 et S
logx logy
restent bornés V.
4.3.1. Supposons d’abord que — Y f(m, n) tende vers une limite / non
nsy

nulle 2 quand x et y tendent vers -+-oo avec Y _ p.
X

Tout d’abord, comme au paragraphe 4.2.1, on est nécessairement dans
le cas ou il existe a, et a, réels tels que I'on ait (24) et (25), puisque, dans

: 1 :

le cas contraire, — Y f(m,n) devrait tendre vers zéro quand x et y
m<x |

n<y

tendent vers —+oo.

Pour la mé&me raison, on a (26).

On a donc (6).

Compte tenu de (6), il résulte de notre hypothése que, lorsque x tend
vers -}-o0,

Cx' (px)"2 L, (log x) L, (log px) tend vers /.
Ceci entraine que, quel que soit 4 > 0,
C (Ax)" (pix)'“* L, (log Ax) L, (log pAx) tend aussi vers /.

Mais le quotient de la deuxiéme expression par la premicre tend vers
/'{i(a1+a2).

On doit donc avoir A"“t*?) —= 1 pour tout 1 > 0, ce qui nécessite
a, + a, =0.

Alors on voit que, quand x tend vers oo,

1) 11 convient de se rappeler ce qui a été dit a la fin du paragraphe 4.1.
2) | est nécessairement finie, et méme de module < 1, puisque c’est la limite d’une
quantité qui est visiblement de module < 1.
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Cpi“* L, (log x) L, (log px) tend vers /.

4.3.2. Supposons maintenant qu’il existe trois nombres strictement positifs

distincts p 4, p, et p5 tels que le rapport (log BE) / (log %) soit irrationnel
P1 1

1
et tels que, pour j=1, j=2¢et j=3, — Y f(m,n) tende vers [ #0
‘ XY m<x
n<y

quand x et y tendent vers +-co avec s - pj
X

Alors, d’aprés ce qui précéde, on est dans le cas ol il existe a; et a, réels
tels que I'on ait (24) et (25) et on a (26), de sorte que 'on a (6), et en outre
onaa; - a, = 0 et, quand x tend vers -+ oo,

C,oj-“2 L, (logx)L, (logp;x) tend vers/pourj=1,2,3.

En considérant des quotients, on voit que

(e
P1 P1

Autrement dit, il existe k, et k; € Z tels que

a, log& = 2k,n et a, logf)ﬁ = 2k,m.

P1 P1

Si a, n’était pas nul, k, et k, ne le seraient pas et on aurait (log ﬁ) /
P1

f / , o
| (log &> = ];, contrairement a ’hypothése que ce rapport est irrationnel.
A 2

On a donc a, = 0, et par suite aussi a; = 0.
Alors (26) donne (23); (24) et (25) donnent (27) et (28); (6) se réduit
a (33). De plus, on voit que, quand x tend vers --co,
C L, (logx)L, (logp;x) tend vers/,
et par suite
CL, (logx)L, (logx) tend vers /.

(33) montre que, quand x tend vers -+ oo,

1
= Y fmn) = CL, (logx) L, (log x) + o [1],

m=<x
n<x
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1
Donc — Y f(m,n) tend vers L

msx
ns<x

Mais, d’aprés la remarque de la fin du paragraphe 4.2.2, on a (39)
puisque I’'on a (27) et (28).
| On voit ainsi que, quand x tend vers -+ oo,

H(l——l) (Z ji@%—?) tend vers /.

p<x p p

2 (i Pk
Le produit infini [[] (1 _1) ( y f(p',p)

-+ k
p k=0 p’

> est donc convergent, et

1
par conséquent la série Y - [2 — f(p, 1) — f (1, p)] est convergente d’apres
4

ce qui a été dit au paragraphe 4.1.
La premicre partie du théoréme 3 est ainsi completement démontrée.

4.3.3. Supposons maintenant que la série

1
21—7 2 —f(p, 1) = f(1,p)]

soit convergente.
D’aprés ce qui a été dit au paragraphe 4.1, ceci entraine que le produit

infini
1 2 5 j’ k
H(l—— < 3 .f(p':: ))
4 jk=o p’
est convergent.

De plus, on a 21—1) {2—Re[f(p, D] —Re[f (1, p]} < +00, ce qui

entraine évidemment (27) et (28).
Autrement dit, on a (24) et (25) avec a; = a, = 0.

Sil'on a
f(27,29 (3,3
( Z Ntk )( Z 3i+k )Z 0,

J,k=0 Jjk=0

f posséde une valeur moyenne nulle et le produit infini

1* f(’,
1—= :
H< P) (f;io P )

est nul, et I’on a bien le résultat voulu.
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Si, au contraire, on a (23), quand x et y tendent vers 00, on a (33),
ou C est une constante complexe non nulle et les fonctions L, et L, sont
données par les formules indiquées au paragraphe 4.2.2.

D’apres les propriétés de L, et L,, si x et y tendent vers +-c0 de fagon

logy logx

et
logx logy

L, (logy) = L, (log x) -+ o [1]

restent bornés, on a

que les rapports

et (33) donne

—L Y f(m,n) = CL; (logx)L, (log x) + o [1].
XY m<x

n

INIA

y

Mais on a pour x > 1

1
L, (log x) L, (log x) = exp{i ) l;(lm [f(p, D] + Im [f(l,p)])}

p<x

et la série

1
Z; {Im[f(p, D]+ Im[f(1, )]}

est évidemment convérgente.
Si S est la somme de cette série, L, (log x) L, (log x) tend vers e’
quand x tend vers —+ oo.

1 :
On voit alors que — Y f(m, n) tend vers Ce” quand x et y tendent
msx
n<y

logy logx )
vers + oo de fagcon que les rapports et restent bornés.
logx logy

Pour achever de démontrer la deuxiéme partie du théoréeme 3, il ne reste
plus qu’a montrer que cette limite Ce™ est égale a la valeur du produit

infini
1\? V02N %)
1 —- . ,
H( p) (,-,éo pE >

Ceci résulte de ce que, d’apres la remarque de la fin du paragraphe, on
a (39) puisque 'on a (27) et (28). |

4.4. Pour terminer, indiquons deux résultats particuliers qui nous paraissent
intéressants.
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THEOREME 4: S’il existe K > 0 tel que ’on ait pour tout p

| Imf(p, )| <K[1-Ref(p, D] et |Imf(l,p)| <K[1—-Ref(1,p)],
f posséde une valeur moyenne.
M (f) est nulle si, et seulement si, on a

|
Z;’ [2—Ref(p, 1) — Ref(1,p)] = +o0

f(@,25 fG3539)
(2 ) (B55e) -0

ou

J:k=0 Jk=0

THEOREME 5: Si I’on a, quand x tend vers -+ oo, [’une ou I’autre des relations

Y. f(p, Dlogp = px + 0[] (40)
et )
Y, f(1,p)logp = px + o [x] (41)

avec p # 1, f posséde une valeur moyenne nulle.
Le résultat subsiste avec p = 1 a condition d’ajouter la condition

1
Z}—?[l—‘ﬁef(p, D] = +o

dans le cas ou I’on a (40), et la condition

1
Z;[l—mef(l,l?)] = o0

dans le cas ou I’on a (41).

Ces deux théorémes peuvent étre déduits de la premiére partie du
théoréme 1, tel qu’il est énoncé au paragraphe 3 pour ¢ = 2, et de la
deuxiéme partie du théoréme 2.

On peut aussi les démontrer en reprenant ce qui a été dit aux para-
graphes 3.1 et 3.2 et utilisant des théorémes analogues relatifs au cas d’une

fonction de J1(, V.

( Regu le 6 octobre 1970)
H. Delange
Faculté des Sciences .
91 - Orsay (France)

1) Théoreme B (da 4 Wirsing) énoncé a la page 275 de notre article cité au para-
graphe 2.3 et théoréme principal de notre mémoire « Un théoréme sur les fonctions
arithmétiques multiplicatives et ses applications » (Ann. Sci. Ecole Norm. Sup. (3), 78
(1961), p. 1-29).
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