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SUR LES FONCTIONS MULTIPLICATIVES
DE PLUSIEURS ENTIERS

par Hubert Delange

1. Introduction

Le résultat suivant a été conjecturé par Wirsing et démontré par
G. Halâsz x).

Soitf une fonction arithmétique multiplicative satisfaisant à

| f(n) | < 1 pour tout ne N *.

L'une des deux circonstances suivantes a lieu :

(a) f possède une valeur moyenne nulle (autrement dit, — ^ f (ri) tend vers
X n< x

zéro quand x tend vers + oo).

(b) Il existe une constante complexe non nulle C, un nombre réel a et une

fonction complexe L définie sur R+ et satisfaisant à

| L (t) | 1 pour tout t g R+

L (At) „et lim 1 pour tout À > 0,
t -» + oo L (t)

la limite étant uniforme sur tout' intervalle fermé contenu dans ]0,+oo[,
tels que Von ait pour x tendant vers + oo

| -X fin) CxiaL(\ogx) + o[l]. (1)
X n<x

| Nous nous proposons ici d'étendre ce résultat aux fonctions multiplicatives

de plusieurs entiers.

1.1. Nous désignons par séq l'ensemble des fonctions réelles ou complexes
j de q entiers strictement positifs.
i

j x) Wirsing: „Das asymptotische Verhalten von Summen über multiplikative
j Funktionen. II", Acta Math. Acad. Sei. Hung., 18 (1967), p. 411-467.

j G. Halâsz: „Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen",
1 Acta Math. Acad. Sei. Hung., 19 (1968), p. 365-403.

L'Enseignement mathém,. t. XVI, fasc. 3-4. 15
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Nous, disons que la fonction / de sé
q

est «multiplicative» si l'on a

/(1,1,..., 1)= 1

et / (rtj/ii ,n'2n2, nqna) f (nl9n2s / («i, n2, lorsque
(n1n2...nq9 n[n2...nq) 1 1}.

Nous désignons par l'ensemble des fonctions de sé
q qui sont

multiplicatives.
Une fonction de 9Jlq est complètement déterminée par les valeurs

f(pr\pr2,...,prq), où p parcourt l'ensemble des nombres premiers et

[rl9 r2, rq] l'ensemble des systèmes de q entiers > 0 non tous nuls.
Ces valeurs peuvent d'ailleurs être choisies arbitrairement.

Nous appelons « valeur moyenne » de la fonction / de séq la limite de

1

X /(" i>n2,.:,nq)
x1 x2 ni*xi

"2 ^ -x2

nq ^ xq

lorsque xl9 x2, xq tendent vers +oo indépendamment les uns des autres,
si cette limite existe et est finie.

Lorsque / possède une valeur moyenne, nous désignons celle-ci par
M {f\
1.2. Ceci dit, on a le résultat suivant:

Théorème 1 : Soit f une fonction de 9Jlq satisfaisant à |/ (nl9 n2, nq) | < 1

quels que soient n1, n2, nq e N *.

Une des deux circonstances suivantes a lieu :

(a) /possède une valeur moyenne nulle ;

(b) Il existe une constante complexe non nulle C, des constantes réelles

a1; a2, aq et des fonctions complexes L1? L2, Lç définies sur R+

et satisfaisant à
I Ly (t) | 1 pour tout t g R+

L / (/.t)
et lim 1 pour tout A > 0 (j 1, 2, q),

f^ + x Lj (t)

les limites étant uniformes sur tout intervalle fermé contenu dans ]0, + oo [,

telles que Von ait quand xl5 x2, xq tendent vers -fco indépendamment
les uns des autres

x) Cf H. Delange, « Sur les fonctions de plusieurs entiers strictement positifs »,
L'Enseignement Mathématique, 15 (1969), p. 77-88.
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X /(«i, n2, ..,,nq) (2)
X2 "1 ^*1

"2 ^ *2

nq<xq

Cxxiai x2ia2... x^fl« Li (log Xi)... Lfl(log xq) + 0 [1]

Nous démontrerons ce résultat en nous plaçant dans le cas où q 2.

Le lecteur verra facilement comment la démonstration doit être modifiée

pour traiter le cas où q > 2.

Pour simplifier l'écriture, nous remplacerons n1 et n2 par m et n et

xx et x2 par x et y.
En restant dans le cas où q — 2, nous préciserons — comme on peut

le faire pour le résultat de Halâsz — dans quel cas on a chacune des

circonstances (a) et (b).
De plus, nous donnerons des théorèmes fournissant des conditions

nécessaires et suffisantes pour qu'une fonction / de 2R2 satisfaisant à

| (m, n) | < 1 quels que soient m et n e N *

possède une valeur moyenne non nulle, ou pour que

— X «)
xy m < x

n<y

tende vers une limite lorsque x et y tendent vers + oo avec un rapport fixe

quelconque, cette limite étant indépendante de la valeur du rapport.
Ici encore, le cas où q 2 n'est pas essentiellement différent du cas où

q > 2.

Enfin, nous indiquerons deux résultats particuliers intéressants.

1.3. Il est entendu une fois pour toutes que, tout au long de cet article, la
lettre p représente toujours un nombre premier. Les lettres m, n, d, y, L, r, s

représentent des entiers; m, n, d sont toujours des entiers > 1.

Une somme qui ne contient aucun terme est considérée comme nulle,
et un produit qui n'a aucun facteur est considéré comme égal à 1.

2. Préliminaires

2.1. Il nous est utile de donner plus de précisions sur les résultats de Halâsz.

/ étant fonction arithmétique multiplicative satisfaisant à

\f(n) | <1 pour tout n > 1,

Halâsz montre d'abord qu'il existe au plus un u réel tel que l'on ait



— 222 —

YJlp{l-Xe[f(p)p-i«]}< +00 (3)

On a ensuite les résultats suivants :

/. S'il n'existe aucun u réel tel que l'on ait (3), / possède une valeur

moyenne nulle.

2. Supposons maintenant qu'il existe un u réel tel que l'on ait (3), soit u0.

Alors,

a. Si 2~irUo f(2r) -1 pour tout r > 1, f possède une valeur moyenne
nulle.

b. Si 2~lrUof(2r) # — 1 pour au moins un r > 1, on a (1) avec a — u0 et

L1 (t) exp (/ £
1

/m [/0)p"iUo]l.
t P<et P

2.1.1. Ajoutons que, lorsque l'on est dans le cas 2 avec u0 « 0, c'est-à-dire

lorsque l'on a

I1 {l-5Re/Cp)} < +co,
P

on a pour x tendant vers + oo

- e /(«)= n +
X „<* p<x \ PJ L r l P J

Ceci est une conséquence inmédiate d'un théorème que nous avons
établi ailleurs 2).

2.2. Il nous est utile aussi de rappeler quelques notions et quelques résultats
élémentaires concernant les fonctions de séque nous avons indiqués dans

l'article cité au paragraphe 1.1 (et qui se généralisent naturellement à sé

2.2.1. Dans sé2 on définit l'opération de convolution de la façon suivante:

/* g est la fonction h définie par

^ / m n Y
h {m, n) —Y,f(dud2)g[—,--\

d\jm \"l "2/
d2/n

La convolution est commutative et associative.

x) Il est clair que, pour chaque p, 1 — Re [f{p)p iu] > 0.
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2.2.2. /et g étant deux fonctions de sé2 et w± et w2 deux variables complexes,

si les séries doubles

/(m, n) g (m, n)

m,n> 1 mWlnW2 m,n> 1 M1 li2

sont absolument convergentes pour He a et He w2 ß, il en est de

même de la série double

h (m, n)
> ou h f * g,

m,n> 1 mWl nW2

et on a pour a et He w2 — ß

| h (m, w)
_ / y / y g (m,

m,r> 1
nw"2 ~

V „à 1 «W2/ V m,r> 1 mWl «W2/

2.2.3. Toute fonction / de telle <lue/(l> 1)^0 Peut se mettre sous la

forme

f= g *K
où h (m, n) f (m, 1)/(l, ri) et g satisfait à

g (m, 1) 0 pour m > 1 et g (1, n) 0 pour n > 1.

Si/ appartient à SDÎ2, les fonctions g et h appartiennent aussi à 9Jt2.

I 2.3. Indiquons aussi le résultat suivant:
j Soit/une fonction de 9Jc2 satisfaisant à \f (m, n) | < 1 quels que soient

1 m et n > 1.

Supposons que
1 ° On n'a pas

| |/(2, 1) | 1 et/(2r, 1) (—l)r+1/(2, 1 pour tout r > 1;

2° On n'a pas
| |/(1> 2) | 1 et/(l, 2S) — l)s+1/(l, 2)s pour tout s >1.

Alors la fonction g considérée au paragraphe 2.2.3 satisfait à

L
1 1 < +oo, (4)

m,n > 1 m n

de sorte que la série double

j g(m,
\ m,n>,/»'"

j est absolument convergente pour 9+ vvx 5t<? 1.

m
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z

De plus, on a pour 3Re 3Re 1

g (m,ri)

N 1 W)m,/i> 1 r>l n

n f(p\ Pk)

_ J\k> 0 P
J\Vi + kW2

+y\f(p]\ 1)'

A y«"
Î?/(I,/)'

(5)

le produit infini étant absolument convergent.
On trouvera dans notre article « On some sets of pairs of positive

integers »1] (du haut de la page 272 à la fin du paragraphe 3.2.5) la
démonstration, sous les mêmes hypothèses, de (4) et de la formule que
donne (5) en y prenant wx w2 1. On verra immédiatement quelle
petite modification de la démonstration permet d'obtenir (5) avec w1 et

w2 quelconques satisfaisant à We wx Die w2 1.

Remarquons que les hypothèses 1° et 2° sont satisfaites en particulier
si l'on a

/(2r, 1) 0 pour tout r > 1 et /( 1, 2S) 0 pour tout s > 1.

Le facteur correspondant à p 2 dans le produit infini au second

membre de (5) est alors égal à 1, et (5) s'écrit

z g{m, ri)

m,n > 1 m n
n

p> 2

f(pj,Pkï
j,k>0 P

jWi+k\V2
y fU>>, iy

j 0
y fihpV
uh pkWï

C'est ce cas particulier que nous utiliserons.

2.4. Nous utiliserons aussi la remarque immédiate suivante :

Soit / une fonction de 9JÎ2 et soient fl et/2 les fonctions de 30t2

déterminées par
f{pr,p")

fi(pr,Ps)

et

pour r et s > 0 et r + s > 0.

Alors on a

0 si p 2,

0 si p > 2,

f{2\T) sip 2,

1) Journal of Number Theory, 1 (1969), p. 261-279.



3. Démonstration du théorème 1 dans le cas ou q 2.

i
î Remarquons d'abord que, d'après les résultats de Halâsz, si / est une
| fonction de 9DÎ2 satisfaisant à \f (m, n) | <1 quels que soient m et n > 1,

| il existe au plus un u réel tel que

{1-Xe[f(p,1)/J"'"]} < + 00

j et au plus un uréel tel que

: < +CX)
H p

Ceci dit, nous allons maintenant démontrer le théorème 1 dans le cas
où q 2, sous la forme plus précise suivante:

Soitf une fonction de 9Jt2 satisfaisant à |/(m, n) | < 1 quels que soient
m et n > 1.

1. Si Von a l'une au moins des conditions

Y - {1 — [/(P, 1)/?"'"]} +oo pour tout u réel

; et

Y - {1 — [f p)P~m]} =* +oo pour tout u réel,

fpossède une valeur moyenne nulle.

2. S'il existe 3.1 et a2 réels tels que

I £l{l-9k [/(/>, < +00

et

{1 — SRc lf(\,p)p~iai]}<+ oo,

il y a deux cas possibles :

Ou bien

/ fOQ.) N

\j,ki02-,(1+"'l) + 't(1+i0S!) J\j,k>3-»<1 + 1 +iaa) J u'

j etalorsfpossède une valeur moyenne nulle.
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Ou bien

I f(2J, 2") f(.y, 34)
¥= 0,

jk>0 2J(-1+i"1)+k(-1+ia2)J\jkio 3

et alors on a quand x et y tendent vers +oo indépendamment Vun de Vautre

— X Z(w' ") c*'ai-y'"2 li(1o8 *) l2^°z y) + 3 [!]> (6)
xy rn^x

n<y

ou C est une constante complexe non nulle et Lx et L2 sont les fonctions
définies sur é%+ par

1

et

L\ (0 exp [/(P, 1)Piai]
p<et p

L2 t) exp \i X - Im [/(l ia2]
' p<e'P

qui satisfont à

et v Lj(Xt)
hm

Lj (t) | 1 pour tout t e R+

1 pour tout X > 0 (j 1 ou 2),
t~+ + 00 dsfit

les limites étant uniformes sur tout intervalle fermé contenu dans ]0, +co[.

3.1. On peut d'abord écrire

/=/i */2> (7)

où et f2 sont définies comme il est dit au paragraphe 2.4.

Définissons maintenant les fonctions arithmétiques hi et h2 par

hi 00 fi (m, 1) et h2 j\ (1, n).

On voit que hi et h2sontmultiplicatives et que l'on a

1) sip >2,
hi (PO

'

et

h2 (pr)

0 si

/(l,pr) sip > 2,

0 si 2.

(8)

(9)
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De plus, d'après ce qui a été dit au paragraphe 2.3., on a

figi * h, (10)

où A (m, ri)Ai (m) A2 («) et gt est une fonction de 9312 satisfaisant à

m,n >1 TYl Tl

et, pour 9te w2 1,

gl (w, ri)

(11)

n
p>2

y i\ (pj, ai /[+y h (À Di r+f A a, Ai]
jÂo pJWl+tWiJ/L=o À1 JL o A2 Jj'

c'est-à-dire

gi (w, n)

m,n>i m

n
p> 2 I /(AAn

njw1+kw2

'
+yf(PJ, 1)"

.1 0
_

^/(i,pT
_k—0 p

kw 2
(12)

J,k> 0 p

le produit infini étant absolument convergent.

(7) et (10) donnent/= g * A, où g =/2 * gt.
D'après ce qui a été dit au paragraphe 2.2.2, il résulte de (11) et de ce que

y \fl(pt,ri)\ _ 1/(2', 2*) |

2, ZZ L _—ZFïZ— <+oo,
n,«>i m n j,fc> o

que l'on a
| g (m, n) |

£ 1 1 < +oo
m,n> 1 Jfl Tl

et, pour 9îe wx Se w2 1,

v g (m, «)
__ / v f2 (m, ri)\ / v gi ri)

Z-< ,.,W1 „Wo l ZZ W1 „Wo / l Z-f
[>„>imWl«W2 \m,n> 1 mWlnW2 J \m,n> 1 M1 Jî2 J

ce qui donne, compte tenu de (12),

g (m, h)I,,„>1 w"1 u"

/ (2J, 2")]
.j,/Éo 2-/lVl+i"'2J n

p>2
z

f(pJ,pkp
j,k> 0 p-Jw1+kw2

'f(p}, iy
.1=0

/(i> A"
*5> A'
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En définitive, on a le résultat suivant:

h1 et h2 étant les fonctions de l'î { déterminées par (8) et (9), on a

/= g
où h (m,n) h,(m) /;, (/;) et g est une fonction de 9Jt2 satisfaisant à

_ I g(m, n)
1 mn

et, pour 9le wt 'He1,

g (m, n)_
mkimWinw>

< +oo (13)

y ni '-jjwi + kwvl ^1
j,k> 2 2f P>2

r /(+,/)! /r+- /(/+, i)ir+- /(1,/rn
_Âopiwi+kw*\/\_jSJL?o pkw°- Jj

le produit infini étant absolument convergent.

3.2. Compte tenu de ce que h (m, ri) -m hx (m) h2 (ri), l'égalité f g % h

s'écrit

/ m\
f(m, n)X S(du d2) h1l — )h2

dl/mV" 1/
d2/«

quels que soient m et n > 1.

Ceci donne, pour x et y > 1,

X /(m, n) £ g (mn)(-) H2 (^\ (15)
m< x m< x \mJ \tlJ
n< y n< y

où Hx et H2 sont les fonctions définies sur l'intervalle [1, +oo[ par

H, (x) X h, (m) et H2 (x) £ h2 (n).
m<x n< x

Il est clair que l'on a

| H, (x) | < x et | H2 (*) | < v pour tout x > 1. (16)

3.3. Ceci dit, supposons d'abord que l'on ait

£-{l-3k [/(p, 1 )p~iu]} +oo
P «

pour tout u réel.

Il en résulte que

Y - {1 — 9le [hx (p)/j-1"]} + oo pour tout u réel,
p
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] ce qui entraine, d'après ce qui a été dit au paragraphe 2.1, que la fonction hx
i 1
1 possède une valeur moyenne nulle. Autrement dit, — H1 (x) tend vers zéro
i x
j quand x tend vers + oo

i Mais (15) peut s'écrire

1 ^ ^ g (m, n) m f x\ n (y-X/K")= s
Xy m< x m< x ÏY1 Tl X \fïlJ y

n<y n<y

module au plus égal à

D'après (16), le terme général de la somme au second membre est de

(m, n) |

m n

De plus, ce terme général tend vers zéro quand x et y tendent vers + oo

TH l X\
puisque — Hx — tend vers zéro,

x \mJ
Compte tenu de (13), il résulte de là que

— £ f(m, n)
xy mSx

n <y

tend vers zéro quand x et y tendent vers + oo. Autrement dit, / possède
une valeur moyenne nulle.

On voit de même que / possède une valeur moyenne nulle si l'on a

£ - {1 — [f(l,p)p~lu]} +co pour tout m réel.

3.4. Supposons maintenant qu'il existe a1 et a2 réels tels que

{1 — [/(/>, l)p-ia>]} < +oo

et

YJlp{l-Ke[f(lp)p-ia*]} < +oo.

Il en résulte que

et

{l-5Re [ht (p)p < +00

E-{1 ~^e[h2(p)p ,a2]} < +oo,
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et, d'après ce qui a été dit au paragraph 2.1, on a quand x tend vers +00
1

H, (x) C[xia1K± (log x) + o [1] (17)
x

et
1

- H2 (x) - C2xl°2 K2 (log x) + o [1], (18)
x

où C[ et C2 sont deux constantes complexes non nulles et, pour t > 0,

Kit)exp { 2 £ Im [hi (p)p~iai]
p<et P

et

K2 (2) exp <j i £ Im [h2 (p)p
p<e* P

Si l'on pose

c; exp I - l- Im [f(2, 1)

et, pour t > 0,

Li (t) exp { / X - Im [f(p, 1

p<et p
et

X2 (0 exp { 2 E
1

p<e* P

on voit que l'on a pour t > log 2

C'iKiit)- CiLi(t)et
de sorte que (17) et (18) peuvent s'écrire

Hi (x) Ci x1+ia>Li (log + [1] (19)
et

H2(*)x1+i"2 L2 (log + o [x], (20)

Cî et C2 sont encore des constantes complexes non nulles et, comme on a

Kt (Àt) K2 (Àt)
lim lim ~ 1 pour tout X > 0,

t^ + oo Kx (t) t-> + oo K2(t)

les limites étant uniformes sur tout intervalle fermé contenu dans ]0, + oo[,
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s on a aussi

lim —^ lim —^ 1 pour tout X> 0, (21)
f->+oo L\ (tj t-^+oo L<2 (0

les limites étant uniformes sur tout intervalle fermé contenu dans ]0, + oo [.

Notons que ceci entraine

Lt (log kx) L2 (log kx)
lim hm 1 pour tout k > 0. (22)

x-+ + oo (log x) X-* + oo L2 O^g x)

3.4.1. Maintenant (15) donne pour x et y > 1

—— t Yf (m, n)
x 1 + W1 y

1 + 1«, Li (l0g X) Li (1()g y)
n̂<y

g{m, n)Hl(m) 2 (n
S ri"<y

m (-)"tilog-) log-
\mj \ mJ \n) \ n

log — L2[log3
(log x) L2(log y)

Le terme général de la somme du second membre est de module au plus
\g(m,n) |

egal a J

m n

De plus, il résulte de (19), (20) et (22) que ce terme général tend vers

g (m, ri)
Cx C2 —quand x et y tendent vers +oo.

m 3/z 2

Compte tenu de (13), ceci entraine que, lorsque x et y tendent vers +co,
la somme tend vers

r rYg (m> ")
1 2

> 1 m 1 +
77

1 + in~'
m,n > 1 rrl u

n de sorte que l'on a

: — X f (m, ri) Cxiai y1""- Li (log x) L2 (log [1],
; I xy m<x
$ n<y

i où

r - rrVg* 2 2-J 1+ifli „ 1+iflo*
!,m>i mx
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3.4.2. Si C 0, ceci implique que / possède une valeur moyenne nulle.
On voit donc que, pour établir le résultat annoncé, il ne reste plus qu'à

montrer que l'on a

g (m, ri)
z-*itn1 + iain1 + ia*

0

si, et seulement si,

/(2J, 2")
z f(y, 3k)

Tri n O i(l + i«i)+fc(l +ia2) / \ j-ri 'J j'( 1 + i«i) + fc( 1 + "*2)
Kj,k> 0 ^ / \ j,k> 0 «5

Compte tenu de (14), il suffit de montrer que

- 0.

p>

si, et seulement si,

n f[ y f(Pj\pk) i/r+» /(^ i)i
il \\_j,kopJ(1+iai)+k(1+ia2}j/LÀ

/(3y, 3*)

_k 0 P k( 1 + ia2)â]} - «

^ i(l + w1) + k(l+i«2)
,fc> 0 j - 0.

Ceci résulte immédiatement de ce que tous les facteurs du produit
autres que celui qui correspond à p 3 sont non nuls.

En effet, on a pour chaque p

f(pJ\pk)

/+*>°o + +K1 + W
z —

7+/C
i+fc>o pJ

1

l-1'2
~ 1.

Pour p > 3, ceci est < 1 et par suite

•M^O P Hl+iai) +) 1+ Z
f(pJ,pk)

j,k> 0 P
j+k>0

j( l+iat) +k( 1 + m2) # 0.

4. Autres théorèmes

Il est entendu une fois pour toutes que, dans tout ce qui suit, / est une
fonction de Wl2 satisfaisant à |/(m, «) | < 1 quels que soient m et n > 1.

Le théorème démontré au chapitre précédent fournit immédiatement
des conditions nécessaires et suffisantes pour que f possède une valeur

moyenne nulle, car il est clair que, lorsque l'on a (6), le module de

l'expression
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— X fxym<x
n<y

tend vers | C | quand x et y tendent vers +00.
Nous nous proposons maintenant d'obtenir des conditions nécessaires

et suffisantes pour que / possède une valeur moyenne non nulle.
Nous chercherons aussi des conditions nécessaires et suffisantes pour

que l'expression

— X fxy m<x
n<y

tende vers une limite lorsque x et y tendent vers + 00 avec un rapport fixe

quelconque, cette limite étant indépendante de la valeur du rapport.
Compte tenu de la remarque faite plus haut sur le cas où l'on a (6), on

voit que ceci a lieu avec une limite nulle si, et seulement si, / possède une
valeur moyenne nulle. Il reste à traiter le cas d'une limite non nulle.

4.1. Remarquons d'abord que le produit infini

est convergent si, et seulement si, la série

X^[2 -f(p, 1

est convergente 1}.

+ 00

x) Rappelons que le produit infini II (1 + un) est dit convergent si

1° il a au plus un nombre fini de facteurs nuls ;

2° le produit II (1 + un) tend vers une limite finie non nulle quand x tend vers + 00.
n< x

1 +un 9^0

Quant le produit infini est convergent, sa valeur est par définition la limite de
II (1 + un) pour x tendant vers + œ. Elle est nulle si, et seulement si, un au moins des

n< x
facteurs est nul.

+ 00
On voit facilement que, si la série S | |2 est convergente, le produit infini

+ 00
+00II (1 +un) est convergent ou non en même temps que la série S un.1

1

(Cf, par exemple, Knopp: Theorie und Anwendung der unendlichen Rehien).
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En effet, si l'on pose

iy f(p\Pk)
l~n) E 1+Mp'

pj j,k>0 Pj

on voit que l'on a quand p tend vers +00

«p "[/(/>, l)+/(l,p)-2]

La série 2" I I2 étant convergente, puisque up •G le produit

infini il (l+wp) est convergent si, et seulement si, la série I up est convergente,

ce qui donne le résultat annoncé.

Ajoutons que le produit infini

n (,-!)'(s'-!**
V P) \j0P

lorsqu'il est convergent, est nul si, et seulement si.

7+*

j,k> 0

/( 2j,2ky

2J+k

car, pour p>3,
v f(p\ Pk),„E —JTIT* 0 Puisclue

j,k> 0 PJ

f{y3*>

3''+*

f(pJ,Pk)

E
fc>

E

o,

j,k> 0 P
j+k> 0

J + k -1 < 1.

4.2. Ceci dit, nous allons montrer d'abord que, pour que / possède une
valeur moyenne non nulle, il faut et il suffit que

1° Les séries Y - [1 — f(p, 1)] et Y - [1 — /(1, p)] soient convergentes;
p ^ p

2° on ait y
f(2J, 2k)

E
/(3J, 3fc)

# 0.

\j,k>o2J/Vmso 3j

Plus précisément, nous établirons le théorème suivant.

Théorème 2: I. Si f possède une valeur moyenne non nulle, les séries

Y - [1 — /(/?, 1)] et Y - [1 — /XI? É7)] *sw2? convergentes et on a
P P

E
j,/t>0

,/'(2J', 2*)'

2i+k i,fc>o -T
(23)
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If. Siles séries Y - [ 1 - f(p, 1 )] et Y - [ I —/(I sont convergentes,
P P

M (/) existe et est égale à la valeur du produit infini

(qui est convergent d'après ce que l'on a vu au paragraphe 4.1, et est nul
si, et seulement si, on a

f(2J\ 2k)\ f(3J\ 3k)\

jko 2j+k J\jko 3j+k

4.2.1. Supposons d'abord que / possède une valeur moyenne non nulle.
Il existe nécessairement at et a2 réels tels que l'on ait

y} {l-9te [f(p9 1)p-^]} < +œ (24)

et

£
*

{l-Ke[f(l,p)p~ia*\} < +*>, (25)

car, dans le cas contraire, / devrait posséder une valeur moyenne nulle.
Pour la même raison, on a

v f(2J\ 2k) \/ /(3', 3*) \
\jh>o 2j(1 + lai)+fc(1 + l°2)y \jk>o 2J'(1 + ia^+k(1 + ia^

' I

On a donc (6).

Il résulte de (6) que, lorsque x et y tendent vers +oo,
Cxiai y'"2 L1 (log x) L2 (log

tend vers M (/).
Ceci entraîne que, quels que soient 2 et /i > 0,

C {>jc)ia> fay)"* L± (log he) L2 (log jiy)
tend aussi vers M (/).

Mais le quotient de la deuxième expression par la première tend vers
nia\
On doit donc avoir

2iai fiia- 1 quels que soient / et /i > 0,

ce qui nécessite a1 a2 — 0.

L'Enseignement mathém,. t. XVI, fasc. 3-4.
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Alors (26) donne (23), (24) et (25) donnent

[/(/>, 1)]} < +oo (27)

et

£ ~ {l-9te [/(!,/?)]} < +oo, (28)

et on voit que, quand x et 7 tendent vers +00 indépendamment l'un de

l'autre,

M (/)
(log x) L2 (log y) tend vers ———

(qui est de module 1 puisque | Lx (log x) L2 (log y) | 1 pour x et y > 1).

Alors, à tout s > 0 et < 2n — \ correspond Xe > 2 tel que, pour
x', x", y et y" > Xe,

I Lt (log x") L2 (log /') - Lj (log x') L2 (log | < 2 sin ^

En prenant y' y" X£, on voit que l'on a

| L1 (log x") — L1 (log x')\ <2 sin - pour x' et x" > Xe, (29)

et, en prenant x' — XE, on voit que l'on a

\L2 (log y")-L2 (log y')\<2sin - pour et > Xs. (30)

Si l'on pose, pour x et y > 1,

At(x)= £ -)]p<x P

et

A2•()')=E -
p<y p

(29) et (30) s'écrivent

| exp [iA1 (x")] — exp [iA1 (x')] | < 2 sin - pour x' et x" > XF (31)
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et

I exp [iA2 {y")] — exp [iÄ2 (/)] | < 2 sin - pour y* et y" > Xz. (32)
4

En prenant x' XE et x" x, on déduit de (31) que, pour x > Xe,

s

Al (x) appartient à l'un des intervalles [Ax (JQ + 2kn — -, Ax (Xe) +

8
2kn + -], où keZ.

2

La différence de deux nombres appartenant à deux de ces intervalles
distincts est au moins égale à 2n — s >

Comme on a évidemment

| At CO ~~ Ai (x') | < \ pour 2 < x' < x" < x' + 2,

l'intervalle auquel appartient A1 (x) est le même pour tous les x > Xg que

pour x X£, c'est-à-dire celui qui correspond à k 0.

i i
8

On a donc \ A±(x) — A{ (Xs) | < - pour tour x > X£, et par suite

| O (O — A1 (x') | < 8 pour xr et x" > XB.

II résulte de là que A1 (x) tend vers une limite finie quand x tend vers

+ oo, c'est-à-dire que la série y - Im [f(p, 1)] est convergente.

On déduit de même de (32) que l'on a

| A2 (y") - A2 y')| < e pour et y" > Xt,
et il en résulte que A2 (y) tend vers une limite finie quand y tend vers +oo,

c'est-à-dire que la série Y - Im [ f (1,/?)] est convergente.
P

Avec (27) et (28), ceci montre que les séries

Z~[1-/(a1)] et X+ -/(!>/>)]

sont convergentes.
La première partie du théorème 2 est ainsi démontrée.

4.2.2. Supposons maintenant que les séries

lb1 ~f(p, 1)] et [1 -/(l,p)]
soient convergentes.
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Ceci entraîne que l'on a (27) et (28). Autrement dit, on a (24) et (25)
avec ai a2 0.

Si l'on a

/(2J*, 2fe)\ / / (3J, 3fc)\
^,-Ào 2;+* yVièo 3^+fc y

/ possède une valeur moyenne nulle.
Si au contraire on a (32), on a quand x et y tendent vers + oo

indépendamment l'un de l'autre

— Z f n)CLX(logL2 (log 7) + [1], (33)
xy m<x

n<y

où C est une constante complexe non nulle,

£1(0 exp {i^1)]}
p<et p

et

Les séries

L2 (0exp {/y
'

[/(l./xlj.
p<et P

Z - Im [f(p,1)] et Z -
P P

étant convergentes, L1 (t) et L2 (0 tendent vers des limites finies, d'ailleurs
de module 1, lorsque t tend vers +oo. Alors (33) montre que / possède

une valeur moyenne (de module égal à C).
Pour achever la démonstration de la deuxième partie du théorème 2,

il reste à montrer que M {f) est égale à la valeur du produit infini

nO-^Yz\ P) \j,k>o p

Pour cela, reportons-nous à la démonstration du théorème 1 donnée

au chapitre 3.

Puisque l'on a (27) et (28), on est dans le cas considéré au paragraphe 3.4,

avec ax a2 0.

(19) et (20) donnent dans ce cas

- H, (x) CA L1 (log x) + o [l] (34)
x
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et

- H2(x) C2L2 (log + [1]. (35)
X

On sait que la constante C qui figure dans (6), réduit ici à (33), est

inée nardonnée par

_ g (m, n)
ct Y ——'

m,n > 1 TTl Tl

(33) peut donc s'écrire

1
v- ^ ^ ^ ^Y f(m, ri) Cx C2(Ŷ———) £i 0°g *) (log [1],

Xy m < x \m,n> 1 TTl Tl J
n<y

et on voit que l'on a pour x tendant vers + oo

\ Y f(m, n)C^cJY8
—li 0°g x) L2 Gog + [1]. (36)

xz m<x \»,,ïi mn
n< x

Mais, d'après ce qui a été dit au paragraphe 2.1.1, on a quand x tend
S +00vers +00

1
T-r / 1

-h1(x)= n m—
X V p i+i

+ co h, (p'ï
x

2

i / i\ r +o°

h2(x)= n h— i+1X p<x\ p

h2 (Pr)

+ o[1]

-o[l]

o[l]
r= 1 P"

n (.-1)(E'-^5) + .w
2 <p<x\ pj \k 0 p J

En comparant avec (34) et (35), on voit que l'on a

CtL,( \ogx) in + (37)
2<p<x\ PPJ2 <p<x\P/ \j=0 P1

c.2L2(iog*) i n (i-
2 <p<x \ p) \k 0 P J

(38)
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Les produits sont de module au plus égal à 1 car on a pour chaque p

et

+^f(pj, 1)

j=o PJ

y/a,/)
fe=o

< £ i - —
j 0PJ

+ oo 1

<E
k 0 P

1 -

1 -
D'autre part, (14) donne

g (m, /i)

i,«>i mn

s
j,k > 0

/ (2J, 2*)

j,k> o 2J

li'-flï /O,/)'

r i)

Lj o II/(!,/)' o[l].

Avec (37) et (38), ceci montre que (36) peut s'écrire

1

E f(m> n) n 1 -7X m< x p< x

f(p',pky
J,k>0 PJ + k + * [1], (39)

ce qui donne le résultat voulu.

Remarquons en passant que la démonstration de (39) a utilisé uniquement

le fait que l'on a (27) et (28).

4.3. Convenons maintenant de dire que / possède une « valeur moyenne
faible » si l'expression

~E
xy m<x

n<y

tend vers une limite quand x et y tendent vers + oo avec un rapport fixe,
cette limite étant indépendante de la valeur du rapport. La valeur moyenne
faible de/ sera la limite en question.

Il est clair que, si / possède une valeur moyenne, elle possède aussi une
valeur moyenne faible égale à sa valeur moyenne ordinaire.
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Comme on l'a vu au début de ce chapitre, /'possède une valeur moyenne
faible nulle si, et seulement si, elle possède une valeur moyenne nulle.

Nous allons montrer maintenant que, pour que / possède une valeur

moyenne faible non nulle, il faut et il suffit que

1° la série £
1

[2 —f(p, 1) - f(l,p)] soit convergente;

ronaJl\j,ko 2j+k )\jjko y J

Plus précisément, nous établirons le théorème suivant.

Théorème 3: I. S'il existe trois nombres strictement positifs distincts pl9

po et p 3 tels que le rapport log — / log — soit irrationnel et tels que,
V Pi// V PU

pour j 1, j 2 j 3, l'expression

— E
xy m< x

n<y
tende vers une même limite non nulle quand x et y tendent vers +cx> avec

-- p :
2) la série

x

Y,1-12 -f(p,1)-/(!,/>)]
est convergente et on a (23).

1) On pourrait dire aussi qu'il faut et il suffit que le produit infini

nfi-1!2/ v.
p) \ j,k> 0 pJ + k

soit convergent et non nul.
2) Cette hypothèse pourrait aussi se formuler de la façon suivante:
Il existe trois couples de nombres strictement positifs (oq, ßx), (a2, ß2), (a3, ß8) tels

que le déterminant
1 10 0

log oq log ßx 1 rx
log a2 logß2 1 r2
log a3 log ß3 1 r3

soit non nul quels que soient /q, r2 et r3 e Z et ne satisfaisant pas àq r2 rz, et tels
que, pour / l,y 2 et y 3, l'expression

1 2 /(w,n)
m< x
n<y

tende vers une même limite non nulle quand x et y tendent vers + oo avec — —
CCj ßj '

La manière dont le résultat se généralise pour les fonctions de OU où q > 2, est
visible sous cette forme.
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II. S, la série2 l[2- /<„, 1) - /(!.,>] répression

— Z fxym<x
n<y

tend vers la valeur du produit infini

n6-!ÏÏ i /<',v,
n I \ ' „/+ fc

x PJ \j,k> 0 pJ

log y log x
quand x et y tendent vers +00 de façon que les rapports et

logx log y
restent bornés1}.

4.3.1. Supposons d'abord que — V /(m, n) tende vers une limite / non
xy m<x

n<y

ynulle 2) quand x et y tendent vers +00 avec - p.
x

Tout d'abord, comme au paragraphe 4.2.1, on est nécessairement dans

le cas où il existe a1 et a2 réels tels que l'on ait (24) et (25), puisque, dans

le cas contraire, — Y / (m, n) devrait tendre vers zéro quand x et y
xy m< x

tt<y

tendent vers +00.
Pour la même raison, on a (26).
On a donc (6).

Compte tenu de (6), il résulte de notre hypothèse que, lorsque x tend

vers +00,
Cxiai (px)ia2 (log x) L2 (log px) tend vers /.

Ceci entraine que, quel que soit X > 0,

C (Xx)iai (pXx)ia2 Lv (log Xx) L2 (log pXx) tend aussi vers /.

Mais le quotient de la deuxième expression par la première tend vers
^iOi + 02)

On doit donc avoir Xi(ai + a2) 1 pour tout X > 0, ce qui nécessite

ai + a2 — 0.

Alors on voit que, quand x tend vers +00,

x) Il convient de se rappeler ce qui a été dit à la fin du paragraphe 4.1.
2) / est nécessairement finie, et même de module < 1, puisque c'est la limite d'une

quantité qui est visiblement de module < 1.
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Cpia2 L1 (log x) L2 (log px) tend vers /.

4.3.2. Supposons maintenant qu'il existe trois nombres strictement positifs

distincts pu p2 et p3 tels que le rapport ^log—^j^log —^ soit irrationnel

et tels que, pour j « 1, j — 2 et j 3, — V /(m, «) tende vers / ^ 0
xy

n<y

y
quand i et y tendent vers +cx> avec - p.-.

x

Alors, d'après ce qui précède, on est dans le cas où il existe ax et a2 réels

tels que l'on ait (24) et (25) et on a (26), de sorte que l'on a (6), et en outre
on a ax + a2 ~ 0 et, quand x tend vers + oo,

Cpl/2 Lj, (log x) L2 (log pj x) tend vers / pour j 1, 2, 3.

En considérant des quotients, on voit que

®"-fer -
Autrement dit, il existe k2 et k3 e Z tels que

P 2 P 3
û2 log «a 2^2^ et ö2 log — 2k3TC.

p 1 Pl

Si a2 n'était pas nul, kx et k2 ne le seraient pas et on aurait log —
V p i

P 2^\ k 2
log — contrairement à l'hypothèse que ce rapport est irrationnel.

Pi/ k2

On a donc a2 0, et par suite aussi at 0.

Alors (26) donne (23); (24) et (25) donnent (27) et (28); (6) se réduit
à (33). De plus, on voit que, quand x tend vers +oo,

C (log x) L2 (log PjX) tend vers /,

et par suite

C L1 (log x) L2 (log x) tend vers /.

(33) montre que, quand x tend vers +oo,

1

V2
«*• m< x

X /(m, n)= CLX (log x) L2 (log + o [1],
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Donc — Tuf(m>n) tend vers /.
X m < x

n^x

Mais, d'après la remarque de la fin du paragraphe 4.2.2, on a (39)

puisque l'on a (27) et (28).
On voit ainsi que, quand x tend vers +oo,

üH) (,L/J?^) tendvers'-

Le produit infini [TT (1 —i X f est donc convergent, et
V PJ W<> PJ+k

par conséquent la série Y - [2 — f(p, 1) — f(l,p)\ est convergente d'après
P

ce qui a été dit au paragraphe 4.1.

La première partie du théorème 3 est ainsi complètement démontrée.

4.3.3. Supposons maintenant que la série

]d[2 -f(P,iw(i
soit convergente.

D'après ce qui a été dit au paragraphe 4.1, ceci entraine que le produit
infini

^ fipi,pk)
„ — j + k
PJ \j,k> 0 P

est convergent.

De plus, on a X~ {2 — [/(/?, 1)] — 9le [/(1,/?)]} < +oo, ce qui

entraine évidemment (27) et (28).

Autrement dit, on a (24) et (25) avec a1 a2 0.

Si l'on a

/(2',2")\/ f(y, 3")
oj,ko2j+kJ\j,koy+k

fpossède une valeur moyenne nulle et le produit infini

*2/ f(pJ, pky
e J

V PJ pj + k

est nul, et l'on a bien le résultat voulu.
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Si, au contraire, on a (23), quand x et y tendent vers +00, on a (33),

où C est une constante complexe non nulle et les fonctions Lx et L2 sont

données par les formules indiquées au paragraphe 4.2.2.

D'après les propriétés de Lx et L2, si x et y tendent vers +00 de façon

log y log x
que les rapports et restent bornes, on a

log x log y

L2 (log y) L2 (log x) + 0 [1]

et (33) donne

— y f (m, ri)CLt(logx) L2 (log + o [1].
xy m<x

n<y

Mais on a pour x > 1

Lj (log x) L2 (log x) exp { / y - (Im[/1)] + Im (1, p)})
V&xP

et la série

1)] + [/(l ,/>)]}
P

est évidemment convergente.
Si S est la somme de cette série, Lx (log x) L2 (log x) tend vers elS

quand x tend vers +a).

On voit alors que — T, f (m> n) ten<i vers CelS quand x et y tendent
xy m<x

n<y

log y log x
vers +oo de façon que les rapports et restent bornés.

log x logy
Pour achever de démontrer la deuxième partie du théorème 3, il ne reste

plus qu'à montrer que cette limite CelS est égale à la valeur du produit
infini

Ceci résulte de ce que, d'après la remarque de la fin du paragraphe, on
a (39) puisque l'on a (27) et (28).

4.4. Pour terminer, indiquons deux résultats particuliers qui nous paraissent
intéressants.
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Théorème'4: S'ilexiste K > 0 telque Von ait pour tout p
| Imf{p, 1) | <K[l-Xef(p, 1)] et\Imf(\,p) | <tf[l-9te/(l,/,)],

fpossède une valeur moyenne.
M (/) est nulle si, et seulement si, on a

£- [2-3?e/0, 1) - 3îe/(l,p)\ +oo

OU

f (2j, 2k)\ / /(3J, 3*)\
.jèo 2J'+" Aièo 3J+t

Théorème 5: Si l'on a, quand x tend vers +00, l'une ou l'autre des relations

£ /0> 1) log/> p+ [x] (40)
p<x

et

£ /( 1, P) log p p[x], (41)
p< X

avec p =£ 1,/possède une valeur moyenne nulle.

Le résultat subsiste avec p 1 à condition d'ajouter la condition

£^[l-%>/(/U)]-.+«>

dans le cas ou l'on a (40), et la condition

T,~[l-9îe/(l,/?)]+00

dans le cas ou l'on a (41).
Ces deux théorèmes peuvent être déduits de la première partie du

théorème 1, tel qu'il est énoncé au paragraphe 3 pour q 2, et de la
deuxième partie du théorème 2.

On peut aussi les démontrer en reprenant ce qui a été dit aux
paragraphes 3.1 et 3.2 et utilisant des théorèmes analogues relatifs au cas d'une
fonction de DTi1 1}.

Reçu le 6 octobre 1970)
H. Delange

Faculté des Sciences
91 - Orsay (France)

0 Théorème B (dû à Wirsing) énoncé à la page 275 de notre article cité au
paragraphe 2.3 et théorème principal de notre mémoire « Un théorème sur les fonctions
arithmétiques multiplicatives et ses applications » (Ann. Sei. Ecole Norm. Sup. (3), 78
(1961), p. 1-29).
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