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TOURNAMENTS AND HADAMARD MATRICES

G. SZEKERES

To the memory of J. Karamata

1. A Hadamard matrix (H-matrix) is a square orthogonal matrix with
all entries -1 or —1. Apart from the trivial cases n = 1 or 2, the order
of an H-matrix must be divisible by 4, and it is a famous yet unsolved pro-
blem whether an H-matrix of order n = 4m exists for all m.

The construction of certain H-matrices can be achieved via tournaments.

A tournament I, = T (uy, ..., u,) is a complete directed graph consisting
e

of n nodes u, ..., u, and one directed edge u; u; for each pair of nodes. We
write u;—u; and say that u; dominates u;. N (J,) denotes the set of nodes
of 7 ,. For every subset { vy, ..., v, } of N(J,) we define

Sy, ...,v) ={weN(T,); w-uv, i=1,.,k},

4
S (v, ...,v) = {weN(T,); v,-»w, i=1.,k;}.
The dual T, = T (uy,...,u,) of I, is defined by the dominance rule
T Tt

An automorphism of 7, is a permutation 7 of its nodes which preserves
orientation, u;—u; <> Uy ;= Uy

In an earlier paper [3] we have considered the following:

Property Ty ,: For every subset {vy,..,v,} = N(J,) of order k,
S (v4, ..., ¥) is at least of order m. A T, tournament J , has order
n > 25 (m-+1) — 1 ([3], Lemma 3). We shall call it extreme if its order is
exactly 2¥ (m-+1) — 1. It is easily seen that for every m there exists an
extreme T , tournament (of order 2m--1). We shall examine here the
existence of extreme T, , tournaments of order 4m--3 for special values
of m. Interest in these tournaments stems from the fact that they supply
H-matrices of order 4m--4. In fact the sets S (u;), i = 1, ..., 4m-+3 have
the property that each S (u;) is of order 2m+-1 and S (u;) N S (u;) for i#7
is of order m, and from sets with this property one can immediately
construct an H-matrix of order 4m-4 ([4], § 1). The converse is not necess-
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arily true; there exist H-matrices and corresponding configurations of
subsets with the above mentioned property which are not the sets S (u;)
of any tournament. I owe to Dr. N. Smythe the remark that the existence
of extreme T, , tournaments is equivalent to the existence of “skew ”
H-matrices of order 4m-+4, that is H-matrices of the form I-+S where [ is
the identity matrix and S is skew symmetric. I also owe to Dr. Smythe the
proof of Lemma 3. The hitherto known orders of skew H-matrices are
given by E. C. Johnsen in [5], Theorem 2.6. The present Theorem 6 gives
infinitely many new orders; the first one is 76.

2. Lemma 1.

Let I be a T, ,, tournament of order 4m--3. Then
() T is regular, i.e. S(v), S’ (v) are of order 2m-1 for every ve N ().
(11) S (vq, v,) is of order m for every pair of nodes v,, v, € N ().
(1) The dual T’ of T is also T, ,,,.
These statements have been proved in [3] (Lemma 4).

Lemma 2.

Let T (uy,...,u,) be T,, of order 4m--3. Let u;—u;; then the set
{u;u—>w—u; ) is of order m and the set { u,;u;—»u,—u; } is of order

m-+1.

Proof. The first set is identical with S" (u;) — 8" (u;, u;) — {u; }, the
second set is identical with S (u;) — S (u;, u;). The statement now follows
from Lemma 1.

Theorem 1.

If there exists an extreme T, , tournament then there also exists an
extreme T, 5,1 tournament (of order 8m--7).

This is basically the well known duplication theorem of H-matrices
though not an obvious consequence of it.

Let n = 4m+3 and uy, ..., u, the nodes of a T, , tournament 7.
Write i—j if u;—u,. Let uj, ..., u, be the nodes of a dual 7,. We define
I = T ,,., as containing the disjoint subtournaments 4 ,, , and another
node v with the following additional dominance rules:

(1) v >u, »u; »v for i=1,..,n.
Furthermore if i—;j then

(2) u; — u
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These rules define 7 completely; we show that 7 is T} 5,,41- We merely
enumerate S (v,, v,) for all possible pairs of nodes of 7.

S, u) = {u;k-i},
S (v, 1) = {u;k—i} are of order 2m-1 by Lemma 1 ().
S (u;, u;) = { w; k—i, k—j} order m by Lemma I (ii)

v { uy; k—i, k—j} order m

u{y ) if iof

{u;}if j—>i order 1.

S (u, u}) = {u; i—k,jok} order m by Lemma 1 (iii)

U { uy; k—i, k—j} order m

u{v} order 1.
S (uy, uy) = {u; k—i} order 2m-+-1
S (uy, uy) = {u, k=i, k—j} order m

U { u; j—k, k—i} order m+1 if i—j

order m if j—i, by Lemma 2
U {u; ) if joi order 1.

The proof of Theorem 1 suggests that we should seek the existence of
T, ,, tournaments J,, n = 4m-3, with the following structure:

(E1) 7, contains two disjoint dual subtournaments J ,,,.; = 7 (u,; aeG),
T yms1 = T (u,; 2eG), indexed by an additive abelian group G of
order 2m-1, and another node v, such that

(E2) u, »v—-u,, al oeG,
(E3) Uy P Up = Uypy > Upgy
Uy D Ug =>Ugyy D> Uge,, all y€GC.

Thus the regular representation of G acts as a group of automorphisms
of I ,m+1- We shall refer to conditions (E1)—(E3) as property (E).

A tournament  ,, .53 With property (£) is completely described by two
sets of elements of G, namely
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A= {awa#0,u,-ug,},

B = {Buz—>uy}.
From (E3) it then follows that

(E3.1) 4oy = U,
(E3.2) 0y
(E3.3) Uy yg = Uy
(E3.4) Uy g U,
all

yeG, a€eA, peB, p'eB =G —B.

In order that (E3.1) be consistent, i.e. that u,, ,—u, and u,—u
exclusive, it is necessary and sufficient that

,+q D€ mutually

(E4) xeAd< —adA.

In particular 4 must contain exactly m elements.

We wish to set up conditions for 7,3 to be T, ,,. We must examine
S (v,, v,) for all possible pairs of nodes of T4, 3-

S, u) = {1, «€A} by (E1) and (E3.1) hence is of order m, as
required.

S (v,u,) = {u,,4; p € B} by (El) and (E3.3), thus B must also contain
exactly m elements (hence B’ = G — B contains m-+1 elements).

S (urpury) = {Uypay = Uryia; 0,036 A}
Y {lh;l—ﬁi = u};z—ﬂé; ﬂi:ﬁZeB,} .

Thus for J,,,+3 to be T, ,, it is necessary that for each 6 =y, — y, # 0,
the total number of solutions of

(3.1) (5 = 0y — OCl N al,azeA,
(3.2) 6 =p1—P, PBi,PreB,

be m. We show that this condition is also sufficient.

Theorem 2.

In order that two subsets A = { oy, ..., 0, }, B={Pfy, ..., b} of G,
both of order m, define a T, ,, tournament I 4,3 with property (E), it is
necessary and sufficient that
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() aeA< —ad¢ A, and
(i) for each 6 € G, 5 # O the equations (3.1) and (3.2) should have alto-
gether m distinct solutions.
We have already seen that the conditions are necessary. To prove
sufficiency we have to show that the sets S(u,, Uy,), S (4,1, ) contain m
elements. Now

S(u;l,”y’g) = {uy 48, = Ury48,; P1,P €B}
U{uy e = U _ay; 0,0 €A}
u{v},

S (uyy, uy,) = {uy+a = ur, +p; o€A,feB}

U{u, p=1u,_o; aed,peB'}.

But for 6 = y,—7, € G the total number of solutions of 6 = f—a,
0 =pf —a, acd, feB, p’'e B is equal to the number of elements in A4
since 6+« is either B or p’. Hence S (uy, u; ) contains m elements. On the
other hand for 6 = 7, —y, # 0 the total number of solutions of § = 8, —f,
d = a;—a, is m—1, by (3.1) and (3.2) and by the following Lemma (with
k =m, n =2m+1):

Lemma 3.

Let B = { By, .0 B} B'={B1, s Bu—r } be a partition of an abelian
group G of order n into two disjoint subsets. For fixed y € G denote by N (y),
N’ (y) the number of solutions of the equations

Y=ﬁi"ﬁj> )’=ﬂ;a—ﬁ},

respectively. Then

N'(y) —=N(@) =n —2k.

Proof. Form the sums y+8,, j = 1, ..., k. If r of these sums are in the
set B then k—r are in the set B'; consequently the number of sums y-+f;,
in B'is(n—k) — (k—r) =n—2k+r. Butthen N (y) = r, N’ (y) = n—2k-}r.

Two subsets A and B of an additive abelian group G of order 2m-1
will be called complementary difference sets in G if

(D0O) A contains m elements,

(D) aed = — ad¢A, and
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(D2) for each 6 € G, 6 # 0 the equations

0 = oy — 0y, 0 =By — B,

have altogether m—1 distinct solution vectors

(ty,00)eAd x A, (B,B,)eB x B.

From conditions (DO) and (D1) it follows that 0 ¢ 4. From condition
(D2) it follows that also B must contain m elements. Furthermore by
Lemma 3, (D2) is equivalent to the condition that (3.1) and (3.2) have
altogether m distinct solution vectors (o, a,) €A x A, (By, f,)€B X B’
where B’ = G —B. Our main purpose is to demonstrate the existence of
complementary difference sets when (i) 4m-3 is a prime power, (ii) 2m-1
is a prime power = 1 (mod 8). In the case when 2m--1 1s a prime power = 1
(mod 8), a general existence theorem does not seem to hold; a machine
search by David Blatt at Sydney University has shown that in the lowest
non-trivial case m = 8 there do not exist any complementary difference
sets in the cyclic group of order 17.

3. We now pass to the construction of complementary difference sets
in the cases indicated.

Theorem 3.

If ¢ = 4m—3 is a prime power and G the cyclic group of order 2m-1
then there exist complementary difference sets in G.

Corollary. If q = 4m-3 is a prime power then there exists a T, ,
tournament of type (E) and order q.

Proof. Let p be a primitive root of GF (¢q), Q = { p**; =1, ..., 2m+1}
the set of quadratic residues in GF (g). Define 4 and B by the rules

(4.1) aed iff p*—-1€Q,
(4.2) peB iff p* —-1€eQ.
Since
-1 =p"""1¢Q,
p*—1eQep ™ -1 = —p #(p*-1)¢Q

so that xe A = — o ¢ A, and conditions (D0) and (D1) are satisfied. Also
(4.3) p'eB if —(*+1eQ.
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Suppose now that

(5.1) 5 '—"‘052—-061 #O, Otl,OCZEA
where
(5.2) P — g p T
2a 22
(5.3) p2=1+p?

by (4.1) for suitable A, A, € G. Then

2a 2(x, +0) 22
p2=p it —p® g p !
by (5.1) and (5.2), hence by (5.3)
26 222 221
(5.4) p —1=p “—p
22
where p % + 1€ Q by (5.3).
Similarly if
(5.1) S =P =P #0, PB,preB
where
251 2(4; =)
(5.2 —p T =1+p
2/3/
(5.3 o
for some 1, 4, € G, we get
2p 20+ p) 22
— P 2 = —p — p25 +p 1
hence again
212 221
p¥—1=p —p

22

with —(p +1)€ 0 by (5.3).

Conversely to every solution 4, 4, € G of equation (5.4) we can deter-

mine uniquely o, € 4 or f, € B from (5.3) or (5.3") depending on whether
22 '

1, . ’
14p°*2 = p¥4p  isin Qor not, hence o, or B from (5.1), (5.1’) so that
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also (5.2) or (5.2') be satisfied, implying o, € 4, B, € B’. Thus the total
number of solutions of (5.1) and (5.1") is equal to the number of solutions
of (5.4) which is m by the following Lemma (with y = p?°—1):

Lemma 4.

Given ye GF(q), y # 0, g = 4m-3, the equation
(6) Y =0, — 04

has exactly m distinct solution vectors (¢, 6,) € QX Q.

This is a well known result on perfect difference sets, e.g. Ryser [2], p. 133
in the case of g prime. We give here a brief proof, to prepare the ground
for Theorem 5 where a similar but more involved argument will be used.

Denote by N (y) the number of solutions (¢,, 6,) € @ x Q of (6) and
consider the equations

(6.1) 1 — 0'2 - 01
(6.2) —1 =90, —0,,

0y, 0,,0,,0,€ Q. Each solution of (6.1) yields, by multiplication with
v, € O, a solution of (6) with y = y,, and conversely each solution of (6)
with y = y, € Q yields, by multiplication with y 7, a solution of (6.1). Hence
N (y,) = N (1) for each y, € O, and similarly N (—y,) = N (—1). On the
other hand 1 = 0,—0, < —1 = 0,—0, with 6, = 0; = 7, hence also
N (1) = N (—1) and we conclude (since each y # O is either y, or —y,)
that N (y) is the same number u for each y # 0. Therefore u(q—1) =
= 2u (2m--1) is equal to the number of expressions ¢, —ag, # 0, 6,, 0, € Q
i.e. to 2m (2m-1), giving u = m.

Theorem 4.

Let q = 4m-3 be a prime power p* and G the elementary abelian p-group
of order p* and exponent p. Then there exist complementary difference sets
in G.

Corollary. If q = 4m--3 is a prime power then there exists a T, 5,11
tournament of type (E) and order 2q-+1.

The proof follows immediately from Paley’s construction of H-matrices
of order ¢ and the doubling described in Theorem 1. The group G of
Theorem 4 is isomorphic to the additive group of GF (g) and we can use
the elements of GF (g) to represent G. As before we denote by Q the set of
quadratic residues of GF(q) and set 4 = B = Q; then (D1) is trivially
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satisfied and also (D2) (with m being replaced by 2m+-1) since by Lemma 4
both equations § = o, —at, (0; 2, € 4 = Q)and 6 = f;—f, (b1, Br€ B = Q)
have m solutions.

Theorem 5.

Let q = 2m--1 be a prime power p* = 5 (mod 8) (hence m = 2 (mod 4))
and G the elementary abelian p-group of order p* and exponent p. Then there
exist complementary difference sets in G.

Corollary. If q = 2m--1 is a prime power = 5 (mod 8) then there
exists a T, ,, tournament of order 4m+3 = 2q-+1 and type (E).
An immediate consequence is

Theorem 6.

For q prime power = 5(mod 8) there exists a skew Hadamard matrix
of order 2 (q-+1).

Although Hadamard matrices of order 2 (g-+1) are known to exist even
when ¢ = 1 (mod 8) (Paley [1], Lemma 4) the result in Theorem 6 seems
to be new. Paley’s matrices are not skew and it is very unlikely that their
rows and columns can be rearranged so as to yield skew H-matrices and
T, ,, tournaments. The configurations obtained from the present construc-
tion are definitely not isomorphic to those of Paley, except when g = 5.

Proof of Theorem 5. We again identify G with the additive group of
GF (g). Let p be a primitive root of GF (g) and G, the multiplicative group
of GF(g), of order g—1 and generated by p. Denote by H, = gp {p*} the
subgroup of index 4 of G,, H;, i = 1, 2, 3 the coset mod H, in G, contain-
ing p', and set K = H,u H,, K¥* = H, U H,.

We take 4 = K, B = K*. Both contain m elements since H, contains
Va(g—1) = 15 m elements. Also condition (D1) is satisfied since —1 =
= p2W@™ D = p™e H, by assumption hence s e K = —ae H, U H,.

To verify condition (D2) consider for fixed 0, € H, the following equa-
tions in «y, o, € K, B, f, € K*:

(7.0) S0 = oy — a,
(7.1) pSo = B1 — B>
(7.2) P25y = oy — o,
(7.3) P38, =By — B, .

Clearly the number of solutions of each of these equations is independent
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of the choice of §, € H, since
veK, PeK*=pYaecK, p*peK*

for every i. Furthermore the numbers of solutions of (7.0) and (7.3) are
equal to each other because aeK= B = ap’*ecK* and feK* = p~3
p = ae K. Similarly the numbers of solutions of (7.1) ans (7.2) are equal
because

peK*=ppf*ecK.

Finally (7.0) and (7.2) have the same number of solutions because
veK= —p>aek.
By the same argument it can be shown that the number of solutions
of each of the equations |

(8-0) 0g = ﬁl — ﬁz

(8.1) POy = 0y — 0y
(8.2) Pz do = B1 — B>
(8.3) p> 0y = oy — 0,

1s the same. Hence for each 6 # 0 the total number of solutions of

0 = oy — 0y, 0 =By — B,

is the same number u. Therefore pu(g—1) = 2um is equal to the total
number of expressions oy —a,, f;—f,, 1.6. to 2m (m—1), giving u = m—I
as required.
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