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From (4.6) and (4.7) we obtain, appealing first to Theorem A and then to
Lemma 3,

Ax) = o(x*"179, A (x) = o(xF ™1 0<k <. (4.8)

Now Lemma 2 establishes the summability (R, /,, k) of Za, 7 “*1*%) or, of
Za, 1"’ for 6 >a+14-6 with arbitrary 6>0. Hence g, <<a-1 as required.

(B) We now choose y such that («+1<)o,<y and note that a«+1-+6
can be replaced by y in (4.7) and (4.8), so that, arguing as before, we estab-
lish the summability (R, /,, k), 0<k<r, of Za, !’ where y> o, is arbitrary.
Hence o, <o, while o, <o, universally, i.e., 6, = g, as we wished to prove.

DEpuCTION 3. If, for the Dirichlet series Xa,l’,’, 6,>—o0 andlim
L/l _1>1, then o, = o, for 0<k<r.

Proof. The hypothesis lim /,/I,_,>1 makes
Api1 + Apip + ... +a,, =0 for [, <, <, +¢&l,

if & 1s sufficiently small and n>n, (¢). Hence, for any p, in particular, for
p<o,

S Ian-l-l +an+2 + .. +aml
lim max : =o0(1), e—>0.
n—-00 lné lm <lIln t+ &lp ln

The desired conclusion now follows from Theorem I (B) with alternative
(2.4) (b).

In the above proof we have supposed that ¢,< o0, the case o, =
being trivial.

CONCLUDING REMARKS

A few remarks are offered in conclusion, supplementing some made in
the beginning. Though Theorem A in one form is Karamata’s (as already
said), a particularization of it ([12], Corollary VI with Tauberian O-condi-
tion) is a much older theorem of Ananda-Rau’s ([1], Theorem 16; [2], Theo-
rem 4). Ananda Rau left open one case of his theorem which Bosanquet
([4], Theorems 2, 3), Minakshisundaram and Rajagopal ([10], Theorem 1
and Corollaries 1.1, 1.3; [11], Theorem A and Corollaries A;, A,) have
independently settled, even for some extensions of Ananda Rau’s theorem.
The theorem mentioned at the outset as being due to Chandrasekharan
and Minakshisundaram ([6], p. 21, Theorem 1.82) is, in fact, a further
extension of one of the extensions of Ananda Rau’s theorem given by
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Bosanquet ([4], Theorem 3). In the present context, it is rather less effective
than the completely independent two-fold result of Karamata’s in the same
direction ([9], Théorémes 1a), 3f)), reformulated as Theorem A. That is
to say, precisely, Theorem A gives rise to a basic converse theorem on
abscissae of summability of general Dirichlet series (Theorem I of this paper)
which is more natural and suggestive as well as more comprehensive than
the like basic theorem resulting from the line of development followed by
Chandrasekharan and Minakshisundaram ([6], p. 86, Theorem 3.71). )

I am indebted to Prof. Bosanquet for some very useful remarks on the
original version of this paper which have led to the preparation of the
present version.
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1).Indeed the Chandrasekharan-Minakshisundaram theorem just referred to is deducible from Theo-
rem I, its case 6, < a + . [or, case 6, = o + ] from part (A) [or, part (B)] of Theorem I with hypothesis

22) () and x” = x* (015 00 = x TTEFN/Hu)

or <v <a-+u [or, hypothesis (2.4) (b)
and x? = xa+u]'




	Concluding Remarks

