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It may be observed that the assumption a+l+/7-1>0 involves no loss

of generality since a+l+/?_1<0 makes successively an+\an\ 0, an 0

and so ar -co for all r>0.

Theorem Y. In Theorem II, let hypothesis (i) be omitted on account

of its being implicit (with q 0, p — a+1) in hypothesis (iii) modified as
under. Let hypothesis (ii) be retained with p changed to a+1, and hypothesis

(iii) replaced by

a„ OK(/„-/„_!)]• (3-11)

Then the conclusion is that Ian l~ns is summable (R, ln, k), 0<^k<r, for <j

satisfying (3.2).

Theorem VI. If in Theorem V, (3.11) alone is changed to

£ I av \p1FV(/„—Zv_1)1~p 0[Z£<«">+1], 1, « + 1

V =1

the conclusion will become the assertion that Ian l~ns is summable (R, /<),

0 <k<r,/or o satisfying (3.8).
The proofs of Theorems Y, VI are omitted, being obvious simplifications

of those of Theorems III, IV, involving the use of Theorem I (A) with
hypothesis (2.2) (b) instead of (2.2.) (a) as formerly. Theorems Y and VI,
as pointed out by Chandrasekharan and Minakshisundaram, yield Ananda
Rau's and Ganapathy Iyer's extensions of the Schnee-Landau theorem
when a->+0.

§ 4. Further applications

Theorem I (A) is a base which, combined with Theorem B, produces
Theorem II, and in this sense Theorem I (A) may be said to correspond
to Theorem II. There are results corresponding to each of Theorems III-VI
in the same sense. For instance, Deduction 1 below corresponds to Theorem

III and shows how other deductions corresponding to Theorems IV-YI
may be formulated. Deductions 2,3 are further examples of results based

on Theorem I.

Deduction L (A) In Theorem I (A), suppose that ar<a+1 and that

(2.2) (a) is replaced by

an 0*K 0(zr*+ff')/(r+1)). (4.1)
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Then

(Tk<(r~/c)(a+ 1) +(fc + 1)<T"
(0<fc<r). (4.2)

r + 1

(B) In Theorem 1 (B), suppose that crr> a+1 and that (2.4) (a) is

replaced by

an 0R K (Z„ CO. (4.3)

Then

ak — (7r(0</c<r). (4.4)

Proof. The proof of part (A) is on the lines of that of Theorem III
excepting that now there is no appeal to Theorem B. The proof of part (B)

may need a further explanation as follows. The two conditions of (4.3)

together imply an oR (f^'1) which, along with the first condition of (4.3),

readily gives us

— an + an+i + ••• + r\lim max -xgpi oR (1), s -> 0
M—-> CO I I jfi I ji "H £ I n n

The conclusion (4.4) now follows obviously from Theorem I (B) with
alternative (2.4) (a) and p a+1.

The following deduction supplements the preceding and has been

kindly suggested by Prof. Bosanquet.

Deduction 2. Suppose that, in Deduction 1, we replace (4.1) in (A)
and (4.3) in (B) by the common hypothesis

an - 0R\rn (/„-/„-!)], <7r>0. (4.5)

Then we have, for 0</c<r, either (A) crfc<a+l, or (B) ok or,according
as Gr<a+1 or crr> a+3.

Proof (A) We choose y such that (0<) or<y<oc+l and, as in (2.6),
assume that Br (x) o (vr). Then we infer, from an application of Lemma 1,

Ar (x) o(xr+y) o(xr+a+1+5) for every 5 > 0. (4.6)

On the other hand, our hypothesis on an gives us first an — 6+(/* + 1)

°r Un
+ 1+Ô) and then, as in the proof of part (B) of Deduction 1,

r "h ß/J + l •** /1x A / a n\lim max —^ oR(1) 8 -> 0 (4.7)
n >0° In "SÊ, I m < Ine In n
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From (4.6) and (4.7) we obtain, appealing first to Theorem A and then to
Lemma 3,

A(x) o(xa+1+ô), Ak{x) o(xk+a+1+ô), 0 </c <r. (4.8)

Now Lemma 2 establishes the summability (R, /„, k) of lan l~(a+1 +<5), or, of
Ianl ns for cr>a+l+<5 with arbitrary <5>0. Hence <rfc<a+l as required.

(B) We now choose y such that (a+1 <) <7r<y and note that a+l+<5
can be replaced by y in (4.7) and (4.8), so that, arguing as before, we establish

the summability (R, ln, k), 0<&<r, of Ian l~f where y > or is arbitrary.
Hence ok<^or while ur< ak universally, i.e.,<7fc <rr as we wished to prove.

Deduction 3. If, for the Dirichlet series Ianl~n\ or> — oo and lim
/„//„_ i > 3, ok — orfor 0</c<r.

Proof The hypothesis lim 4//n_1> 1 makes

^n + i on+2 "F ••• ~f~ 0 for ln ln -j- sln

if s is sufficiently small and «>/z0 (s). Hence, for any p, in particular, for
p<crr,

— I an+l + ßn + 2 + ••• + I

/1X Alim max — o (I), s -> 0
n—>oo ln l m <. In s In n

The desired conclusion now follows from Theorem I (B) with alternative
(2.4) (b).

In the above proof we have supposed that ur<oo, the case or oo

being trivial.

Concluding Remarks

A few remarks are offered in conclusion, supplementing some made in
the beginning. Though Theorem A in one form is Karamata's (as already
said), a particularization of it ([12], Corollary VI with Tauberian O-condi-

tion) is a much older theorem of Ananda-Rau's ([1], Theorem 16; [2], Theorem

4). Ananda Rau left open one case of his theorem which Bosanquet
([4], Theorems 2, 3), Minakshisundaram and Rajagopal ([10], Theorem 1

and Corollaries 1.1, 1.3; [11], Theorem A and Corollaries Au A2) have

independently settled, even for some extensions of Ananda Rau's theorem.

The theorem mentioned at the outset as being due to Chandrasekharan

and Minakshisundaram ([6], p. 21, Theorem 1.82) is, in fact, a further
extension of one of the extensions of Ananda Rau's theorem given by
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