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exactly as (2.2) (a) implies (2.7). Since now y>crl.>p, the above condition
in its turn implies

lim max (bn + bn+1 + +bm) oR( 1), e- 0

nIn l m < ^ n ® In

By Theorem A with hypothesis (1.2) (a) and a b 0, it follows that
lan l~s is convergent for any o such that o^y>or and therefore a0 <or.
But, in any case, (r0>(7/c>crJ. for 0<&<r and so we have the conclusion (2.5).

In the preceding argument we have supposed that ar<oo since or=co
implies trivially ak= oo.

§ 3. Applications to theorems of the Schnee-Landau type

Theorem II given next is the simplest of the theorems of the type
mentioned above and it is a direct combination of Theorems I, B. Theorems V,
VI are generalizations, respectively of Ananda-Rau's and Ganapathy Iyer's
extensions of the Schnee-Landau theorem ([2], Theorem 9; [7], Theorem 10),

as given by Chandrasekharan and Minakshisundaram ([6], pp. 88-9,
Corollaries 3.73, 3.74). Theorems III, IV are apparently new counterparts
of Theorems V, VI, the newness consisting in the replacement of the two-
sided Tauberian conditions of the latter pair of theorems by analogous
one-sided conditions suitably supplemented.

Theorem II. Suppose that (i) the Dirichlet series,

Va"L *s a + it
i L

is summable (R, /n, q) for some when cr>p, (ii) the sum-function f (s)
thus defined is regular for o>r\ when q<p, and satisfies the condition

fis(|tD, r>0, uniformly for

(iii) the coefficients an of the Dirichlet series satisfy one of the two alternatives

(a), (b) of (2.2), but with 6 (x) x1_Then the Dirichlet series

is summable (R, k), 0</v<r, for

(r — k) p + krj
a >

r

Proof. By Theorem B, the Dirichlet series is summable (R, /n, rr), /*'>/*,
for G>rj and hence or> < j? < p. Therefore it is evident from the proof of



Theorem I (A) ending with (2.10) that the Dirichlet series is summable

(R, /„, k), 0<fc<r', for

whence the desired conclusion follows when we let r'-±r.

Theorem III. In Theorem II, let p be replaced by a+1 in hypotheses (i)
and (ii) ; also let hypothesis (iii) be replaced by

an 0R[rn(!„-/„_,)],/„ - /„-! (t^'j (3-1)

Then the conclusion is that Ian l~ns, 5 cr-j-h, is summable (R, k),
0 < k < r, for

Proof. As in the proof of Theorem II, the series Ian l~ns is summable

(R, r% r'>r, for <r>rj where now rç<a+l, so that cr,<f/<a+l. We
begin by choosing y and correspondingly 6 (x) as follows :

(r' —k)p + krj
a >

<7 >
(r — fc) (oc + 1) + (fc + 1) n

r + 1
(3.2)

rj < y < a. + 1 0 (x) x(r/~<x+y)/^/ + 1\

Then, since r'>r and y>rj, we have

r' — a + y r — a + y r — a + rj

(3.3)

r' + l r + 1 1

And so (3.1) gives us, as 72-+00,

"n oR rnin'+1 0r <"+1 (/„)]. (3.4)

Also, if /„ </m</n+£0 (/„), (3.1) again gives us as 00,

Or K Cm -0] if a > 0

an+l + an + 2 + + Clm —

Or K Cm - U] if a < 0

so that, whether a>0 or a<0,

an+1 + an+2 + ••• + am 0R [/" e 0(Z„)] (3.5)
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In (3.4) and (3.5),

^0(1«) K where p' a +
** 1

(>y).

Hence, combining (3.4) and (3.5), we get

lim max
n—>o° ln --I' I m < ln + eO (ln

an + an+1 + + a?J

—

r' + 1

oR( 1), e -> 0 (3.6)

(3.6) and the fact, following from Theorem B, that lan l~ns is summable
(R, /„, r'), enables us to use (2.10) in the proof of Theorem I (A) with r,
p replaced by r', p' respectively, so as to infer that Ian l~ns is summable
(R, /„, fc), 0</c<r', for

a >
(r' —k) p' + ky (rf —k) (a+ 1) + (fc + l)y

r' r' + 1

This yields (3.2) as required when we let r'~+r and recall that y (>rj) can be

taken arbitrarily close to rj.

Theorem IV. In Theorem III, (3.1) alone can be changed to

n

Z (av + |av|)^(/v-/v_1)1-" 0(C"+1>+1)1), /„ - /„_!

O
r — a — +

l r+l-p-iln p>l, a + I+ p
1 > 0,

(3.7)

w/Y/z //ze conclusion changed in consequence to the assertion that Ian I ns is

summable (R, /„, /c), 0 </t<r,/br

cr >
(r — k) (a + 1) + (k + 1 — p *) rj

r + 1 - p-1
(3.8)

Proof. We observe that Theorem III may be viewed as the limiting
case p oo of Theorem IV.

The proof itself is similar to that of Theorem III with the difference

that the choice of y and 6 (x) in (3.3) is now altered as below:

i; < y<a + 1 0(x)

1) We suppose that /0 0.
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And furthermore the step corresponding to (3.6) is obtained as follows.

Writing 1-1 /p 1 /p',weget, for /„</m</„+£0 (/„),

a„+1 + a„+2 + + am<an + 1 + | an+1 + + |

m-n
Z (av+n + \av+n\)lv+

V =1

(/v+„-/v+„_1)1/"'
X

X! (^v + « I^v + /j I) ^v + ti^Jv + n K + n—l)
.V =1

1 -p
1!p

X

X
-m-« 7 _ 7

V + 71 V + 71 1

o

o

/a +1 + l/p
»7

.V 1 V ~b 7Î

Hp'

71+1
(ft-* 00)

ja+l + l/p { g ^ (0 } 1/P'

(3.9)

where we have used the hypothesis (3.7) in the passage to the step preceding
(3.9). Taking m ft+1 in the step preceding (3.9), we get also

an + i — Or ja + l + l/p 0.+1 -01/p''
ln+ï

(ft-b 00)

Or [

oR[e+\ip{e(in+1)y»"]. (3.10)

From (3.9) and (3.10) with ft+1 changed to ft, we obtain, instead of (3.6)
in the proof of Theorem III,

lim max
n—><x> ln d; lm < ln + £0 (In)

ün + an+l + + an

ii:
— 0R (1) 8 -> 0

where
1 (r'-x-l+y)

p — cc + — + —
p (r' + l-p x)p'

After this the proof is completed exactly like that of Theorem III subsequent
to (3.6).
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It may be observed that the assumption a+l+/7-1>0 involves no loss

of generality since a+l+/?_1<0 makes successively an+\an\ 0, an 0

and so ar -co for all r>0.

Theorem Y. In Theorem II, let hypothesis (i) be omitted on account

of its being implicit (with q 0, p — a+1) in hypothesis (iii) modified as
under. Let hypothesis (ii) be retained with p changed to a+1, and hypothesis

(iii) replaced by

a„ OK(/„-/„_!)]• (3-11)

Then the conclusion is that Ian l~ns is summable (R, ln, k), 0<^k<r, for <j

satisfying (3.2).

Theorem VI. If in Theorem V, (3.11) alone is changed to

£ I av \p1FV(/„—Zv_1)1~p 0[Z£<«">+1], 1, « + 1

V =1

the conclusion will become the assertion that Ian l~ns is summable (R, /<),

0 <k<r,/or o satisfying (3.8).
The proofs of Theorems Y, VI are omitted, being obvious simplifications

of those of Theorems III, IV, involving the use of Theorem I (A) with
hypothesis (2.2) (b) instead of (2.2.) (a) as formerly. Theorems Y and VI,
as pointed out by Chandrasekharan and Minakshisundaram, yield Ananda
Rau's and Ganapathy Iyer's extensions of the Schnee-Landau theorem
when a->+0.

§ 4. Further applications

Theorem I (A) is a base which, combined with Theorem B, produces
Theorem II, and in this sense Theorem I (A) may be said to correspond
to Theorem II. There are results corresponding to each of Theorems III-VI
in the same sense. For instance, Deduction 1 below corresponds to Theorem

III and shows how other deductions corresponding to Theorems IV-YI
may be formulated. Deductions 2,3 are further examples of results based

on Theorem I.

Deduction L (A) In Theorem I (A), suppose that ar<a+1 and that

(2.2) (a) is replaced by

an 0*K 0(zr*+ff')/(r+1)). (4.1)
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