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exactly as (2.2) (a) implies (2.7). Since now y>0a,>p, the above condition
in its turn implies

lim max (b,+b,4s1+...+b,) = 0g(1), e6>0.
nsoly <lpm <ly + el,
By Theorem A with hypothesis (1.2) (a) and a = b = 0, it follows that
Za,l,° is convergent for any ¢ such that ¢ >y>o¢, and therefore o, < o,.
But, in any case, o, >0, >0, for 0 <k <r and so we have the conclusion (2.5).
In the preceding argument we have supposed that ¢,< oo since g,= o0
implies trivially o,= 0.

§ 3. APPLICATIONS TO THEOREMS OF THE SCHNEE-LANDAU TYPE

Theorem II given next is the simplest of the theorems of the type men-
tioned above and it 1s a direct combination of Theorems I, B. Theorems V,
VI are generalizations, respectively of Ananda-Rau’s and Ganapathy Iyer’s
extensions of the Schnee-Landau theorem ([2], Theorem 9; [7], Theorem 10),
as given by Chandrasekharan and Minakshisundaram ([6], pp. 88-9,
Corollaries 3.73, 3.74). Theorems III, IV are apparently new counterparts
of Theorems V, VI, the newness consisting in the replacement of the two-
sided Tauberian conditions of the latter pair of theorems by analogous
one-sided conditions suitably supplemented.

THEOREM II. Suppose that (1) the Dirichlet series,

o0

da
s ?
1 ln

n .
s =0 +it,

is summable (R, 1., q) for some q >0 when 6> p, (i1) the sum-function f (s)
thus defined is regular for ¢ >n when n<p, and satisfies the condition

f(s) = O (|t]"), r>0, uniformly for o>=n+e>n,

(iii) the coefficients a, of the Dirichlet series satisfy ONE of the two altern-
atives (a), (b) of (2.2), but with 0 (x) = x"~ P! Then the Dirichlet series
is summable (R, 1, k), 0<k<r, for

(r—k)yp + kn

r

o=

Proof. By Theorem B, the Dirichlet series is summable (R, /,, r’), ¥’ >r,
for 6>n and hence o, <y <p. Therefore it is evident from the proof of
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Theorem I (A) ending with (2.10) that the Dirichlet series is summable
R, 1, k), 0<Lk<r', for

(r'=k)p + kn

4

r

o>

whence the desired conclusion follows when we let r'—r.

THEOREM III. In Theorem 11, let p be replaced by oa—+1 in hypotheses (i)
and (ii) ; also let hypothesis (iii) be replaced by

rF—a+n
d, = OR[li(ln_—ln—l)]a ln - ln—l = O<ln i >' (31)

Then the conclusion is that Za,l,’, s = o-+it, is summable (R,1, k),
0 <k<r, for

(r—k)y(a+1) +(k+1Dn
o > .

3.2
r+ 1 (3.2

Proof. As in the proof of Theorem II, the series Xa,/,® is summable
(R, L, r"), ¥'>r, for >n where now n<a-+1, so that o, <y<a+1. We
begin by choosing y and correspondingly 6 (x) as follows:

n<y<o+1, 0(x)=x0""en/0+D (3.3)
Then, since r'>r and y>ﬁ, we have

r—o +y r—o 4y r—o+ g
> -
r'+1 r+1 r+1

And so (3.1) gives us, as n— oo,

r—a-+n r—a+y
a, = OR [lzln ret :, = ORr [:ls ln vt ] = Og [lze(ln)] . (34)

Also, if [, <I,,<l,+¢6 (1), (3.1) again gives us as n— oo,

J OR [110:1 (lm _ln)] if o >0 ’
An+1 + Apiz + .o m

I

| 0= [ (L, —1)]if « < 0,

so that, whether « >0 or ¢ <0,

an+1 + Apt2 + ... + am = OR [lzgg(ln)] . (35)
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In (3.4) and (3.5),

, r'—a 4+
ILo(,) =1° where p' = o+ M (>7).
r'+1
Hence, combining (3.4) and (3.5), we get
— a, +a,yq + ... +a,
lim max L = 0gx(1), e >0. (3.6)
n—>oo ly, <1, <lI, + 0 (I,) ln

(3.6) and the fact, following from Theorem B, that Xa, /’,° is summable
(R, /,, r"), enables us to use (2.10) in the proof of Theorem I (A) with r,

p replaced by r’, p’ respectively, so as to infer that Xa, [ ® is summable
(R, 1, k), 0<k<r’, for

(r'=kyp" +ky ("=k(a+1) +(k+1y
r’ B r'+ 1 '

o=

This yields (3.2) as required when we let r'—r and recall that y (>#) can be
taken arbitrarily close to .

THEOREM IV. In Theorem 111, (3.1) alone can be changed to

Z (av+lavl) ZIC (lv—lv—l)l_p =0 (li(d'?‘l)'*’l)l), ln - ln—l =
v=1

(3.7)

r—cz—p"'1+n
= O[Zn r+1—p—1jl, p>1,a+1+p 1>0,
J

with the conclusion changed in consequence to the assertion that Xa, 1’ is
summable (R, I, k), 0<k<r, for

(r—k)(a«+1) + (k—l—l-—p_l)n
g > .
r+ 1 —p—1

(3.8)

Proof. We observe that Theorem III may be viewed as the limiting
case p = oo of Theorem IV.

The proof itself is similar to that of Theorem III with the difference
that the choice of y and 6 (x) in (3.3) is now altered as below:

n<y<a+1, 0(x)=xE"ee H=n/0+1-p7h

1) We suppose that [, = O.
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And furthermore the step corresponding to (3.6) is obtained as follows.
Writing 1—1/p = 1/p’, we get, for [,</,<[,-+e0 (1),

ap+1 + Ay+2 + ...+ A <an+1 + ,an+1| + ...t Am + ,aml

-n

1_
= Z (av+n+|av+nl) lv+n(lv+n—lv+n__1)( P)/P ><
v=1

(lv+n - lv+n—1)1/p'

lv+n

m—n 1/p
(\< I: Z (av+n+|av+n,)p ll\”-f-n (lv+n—lv+n—1)1_p:I X

v=1
m-— 1/p’
> [ Zn lv+n — lv+n—1:| I

v=1 lzl+n
_I/p
= O|:Z’°:1+1+1/p 9"_1.1”1__} (n— o0)
n+1
0 (L)}
:O[liw,p{e W} ] 3.9)

where we have used the hypothesis (3.7) in the passage to the step preceding
(3.9). Taking m = n-+1 in the step preceding (3.9), we get also

_ln)llp’

l

+1+1 (L4

a,+1 = Opg [li i ]
n+1

} (n— o0)

—y—pn—1 ——1 ’
= OR[lzii/Plf,lla pl+m/(r+1-p 7]

= Opr [lﬁi/P{G(lnH)}l/pI] . (3.10)

From (3.9) and (3.10) with n+1 changed to », we obtain, instead of (3.6)
in the proof of Theorem III,

—— a, +a,yy + ... +a,
lim max > = 0g(1l), e—>0,
n—0 lp = Im <lp + &0 (Iy) ln

where

After this the proof is completed exactly like that of Theorem III subsequent
to (3.6).
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- It may be observed that the assumption a+-14p~ ' >0 involves no loss
of generality since a-+1-+p~'<0 makes successively a,-+|a,| =0, a,= 0
and so g, = —co for all r>0.

THEOREM V. In Theorem 11, let hypothesis (1) be omitted on account
of its being implicit (with q = 0, p = a+1) in hypothesis (iii) modified as
under. Let hypothesis (i) be retained with p changed to a1, and hypothe-
sis (1i1) replaced by

a, = O[L(,~1,_)]. (3.11)

Then the conclusion is that Xa, 1’ is summable (R, 1, k), 0<k<r, for o
satisfying (3.2).

THEOREM VI. If, in Theorem V, (3.11) alone is changed to

n

Y a2 B, ~1,- )" = 0[BT O], p> 1, a4+ 1+ p7 >0,
v=1
the conclusion will become the assertion that Xa, l”,’ is summable (R, 1,, k),
0<k<r, for o satisfying (3.8).

The proofs of Theorems V, VI are omitted, being obvious simplifica-
tions of those of Theorems III, IV, involving the use of Theorem I (A) with
hypothesis (2.2) (b) instead of (2.2.) (a) as formerly. Theorems V and VI,
as pointed out by Chandrasekharan and Minakshisundaram, yield Ananda
Rau’s and Ganapathy Iyer’s extensions of the Schnee-Landau theorem
when a— +-0.

§ 4. FURTHER APPLICATIONS

Theorem I (A) is a base which, combined with Theorem B, produces
Theorem 1II, and in this sense Theorem I (A) may be said to correspond
to Theorem II. There are results corresponding to each of Theorems III-VI
in the same sense. For instance, Deduction 1 below corresponds to Theo-
rem III and shows how other deductions corresponding to Theorems IV-VI
may be formulated. Deductions 2,3 are further examples of results based
on Theorem I.

DepucTtioN 1. (A) In Theorem 1 (A), suppose that o,<oa-+1 and that
(2.2) (a) is replaced by

ay, = O [l (l,=1-0)]s by = bioy = O(LTT*7o/0FD). 0 (4.1)
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