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§ 2. A BASIC THEOREM

The theorem which follows supplies a basis for all the other theorems of
this paper, whether by itself or not.

Theorem I. (A) For the Dirichlet series

°o ~
SP n - •I 7s > s g Fit,
1 Ln

suppose that <Jr<p for some r> 0. Suppose also that there is a y and an
associated 6 (a) such that

cr < y < p 0 (x) x 1 - (p~y)/r (2.1)

with

EITHER (a)

— an + an+1 + ••• + am
urn max — oR (1), e - 0
n-^co I n ^ I m < E0 (ln) 'n

OR (b)

— I an+l + an + 2 + ••• + am I

lim max — o (1), s 0
n—+co ln ^ Im < £0 (ln) n

Then

(r-k)p +
<*k<

(2.2)

(2.3)

(B) If gr>p, instead of gr<p as in (A), and p is such that

either (a)

— an an+1 + + am
lim max - oR (1), e - 0
n—>co ln ^ I m < £ ln n

OR (b)

77—
I an +1 + an + 2 + ••• + «m I

lim max — o (1), s -» 0
n—*00 I n — ^ m *7 £ I n n

I (2.4)

then

Gk Gr (0 < k < r) (2.5)



— 250 —

Proof. (A) The proof is given below only for the case in which {<an}

satisfies the hypothesis in alternative (2.2) (a), the remaining case of alternative

(2.2) (b) being exactly similar.
By the definition of or and that of y in (2.1), lan I~ny is summable

(R, ln, r) to sum S (say), and so

b1+b2 + (G?! l~i — S) + a2 l~2 + ••• is summable (R, /„, r) to 0,

i.e.,
Br (x) o(xr) x -> co (2.6)

while it is easy to prove that

lim max K + bn+1 + + bm
_ ^ ^ ^ ^ ^

oo in & im < in + £0 (in) j^~y — > e -> u, (Z. /;
n

distinguishing between the case y > 0 and y < 0. If y > 0, then

bn + bn+1 + + bm anln 7 + an+1 4+i + + am lmy (n > 1)

< l~y max (an + an+1 + + av)

from which and (2.2) (a) we have (2.7) as an immediate consequence.
On the other hand, if y < 0, then

bn + bn+1 + + bm < lmy max (av +av+1 + +am), (2.8)

where

4 < 4 < lm </„ + £# (4) < (1 + £) 4

0(0 //„y-"*»1"
< (l+g)|r-''+''1/r (say).

0(o Vv

Hence (2.8) gives us

+ 1 + ••• + b„
max ip-y

/ ~ 7

< max (av+ av+1 +...+aw)
M ly iT < ln + £0 (^n)

- W + av+i + ••• + ^ mMr) r) max r }
\'v/ \v (v <lv + eKB(ly)v
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In (2.9),

since y<0, p-y>0. Hence (2.9) in conjunction with hypothesis (2.2) (a)

leads to (2.7) again.
After this we appeal to Theorem A with (1.1) and (1.2) (a) replaced by

(2.6) and (2.7) respectively, to obtain

B(x) =B(ln) o(lpn-y) o(xO~v) in+i >x>ln^ co

From the last step and (2.6), we get, by using Lemma 3,

f (l--)(p-y) + - rl
Bk(x) r Vfor 0 <k <r

o (.xk+ß) where ß 1 — (p —y) > 0
r

Hence lanl~y~ß, being summable (R, /„, r), is also summable (R, /„, k)
by Lemma 2, i.e., Ianl~ns is summable (R, /„, k) for

o>y + ß y + 1 -~)(p-y) (l-~)p +- y. (2.10)
\ r \ r r

Since y><rr may be taken as near to or as we please x), (2.10) immediately
gives us the conclusion (2.3).

In arriving at (2.3) we have tacitly assumed that ar>—oo. When

ar —oo, we still reach (2.3) in the sense that ok — — oo for 0 <k<r, as

we may see by taking y — G (G positive and arbitrarily large) in the

preceding argument.

(B) As in (A), we confine ourselves to the hypothesis (2.4) (a), the
treatment of (2.4) (b) being precisely similar. Defining as in (A)

hi + b2 + (a1l1y — S) + a2l2 7 + (y><Jr),

we see that (2.6) holds again, while (2.4) (a) implies

— (h„ + h„+i + +bm)
lim max — oR (1), e 0
n—>°o ln — 'm < 'n "f" n

1) The truth of hypothesis (2.2) for some y, ar < y < p, implies its truth for any y\ ar < y' < y, so
that y may be replaced by y'.
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exactly as (2.2) (a) implies (2.7). Since now y>crl.>p, the above condition
in its turn implies

lim max (bn + bn+1 + +bm) oR( 1), e- 0

nIn l m < ^ n ® In

By Theorem A with hypothesis (1.2) (a) and a b 0, it follows that
lan l~s is convergent for any o such that o^y>or and therefore a0 <or.
But, in any case, (r0>(7/c>crJ. for 0<&<r and so we have the conclusion (2.5).

In the preceding argument we have supposed that ar<oo since or=co
implies trivially ak= oo.

§ 3. Applications to theorems of the Schnee-Landau type

Theorem II given next is the simplest of the theorems of the type
mentioned above and it is a direct combination of Theorems I, B. Theorems V,
VI are generalizations, respectively of Ananda-Rau's and Ganapathy Iyer's
extensions of the Schnee-Landau theorem ([2], Theorem 9; [7], Theorem 10),

as given by Chandrasekharan and Minakshisundaram ([6], pp. 88-9,
Corollaries 3.73, 3.74). Theorems III, IV are apparently new counterparts
of Theorems V, VI, the newness consisting in the replacement of the two-
sided Tauberian conditions of the latter pair of theorems by analogous
one-sided conditions suitably supplemented.

Theorem II. Suppose that (i) the Dirichlet series,

Va"L *s a + it
i L

is summable (R, /n, q) for some when cr>p, (ii) the sum-function f (s)
thus defined is regular for o>r\ when q<p, and satisfies the condition

fis(|tD, r>0, uniformly for

(iii) the coefficients an of the Dirichlet series satisfy one of the two alternatives

(a), (b) of (2.2), but with 6 (x) x1_Then the Dirichlet series

is summable (R, k), 0</v<r, for

(r — k) p + krj
a >

r

Proof. By Theorem B, the Dirichlet series is summable (R, /n, rr), /*'>/*,
for G>rj and hence or> < j? < p. Therefore it is evident from the proof of
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