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§ 2. A BASIC THEOREM

The theorem which follows supplies a basis for all the other theorems of
this paper, whether by itself or not.

THEOREM 1. (A) For the Dirichlet series
>
suppose that a,<p for some r>0. Suppose also that there is a y and an
associated 0 (x) such that

I &

n

, S=0+1i1,

Ty
S

o, <y <p, 0O0(x)=xt"0Nr, (2.1)
with
EITHER (a)
_ a, + a, + ... +a,
lim max +lp = 0x(1),e >0,
nowoly, <1, < &0 () ln
or  (b) L (2.2)
— la,o1 + apys + ... +a,
lim max o +2p | =0(1),e>0.
n—>owol, <1, < &0 (I,) ln
Then
(r=k)p + ko,
G, < L O<k<r). (2.3)
r
B) Ifg,>p, instead of 6.<p as in (A), and p is such that
EITHER (a)
— a, +a,s, + ... +a,
lim  max T = 0x(1),e >0,
n—>w1nélm<£ln n
or (b) b (2.4)
— Ap+1 + Auyoy + ... +a,
lim max o +2p | =0(1),e >0,
n—ol, =<l <¢el, ln
then

o, = 0, (0<k<r). - (2.5)
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Proof. (A) The proof is given below only for the case in which {a,}
- satisfies the hypothesis in alternative (2.2) (a), the remaining case of altern-
ative (2.2) (b) being exactly similar.

By the definition of ¢, and that of y in (2.1), Za, [’ is summable
(R, I, r) to sum S (say), and so

bi+b,+...=(a, I7"—=9S) + a, 7" + ... is summable (R, [, r) to 0,
1.€.,
B"(x) = 0o(x"), x > o0, (2.6)

while it is easy to prove that

lim max by + Baps + wn b

n—oo ly =l <y + €0 (Iy) lP_'Y
n

2= 0x(1), e->0, (2.7)

distinguishing between the case y>> 0 and y<O0. If y> 0, then
bn + bn+1 + ...+ bm = anln_y + An+1 ln—-i?l + .+ A lr;y (n>1)

<177 max (a,+a,.;+...+a,),

from which and (2.2) (a) we have (2.7) as an immediate consequence.
On the other hand, if y<0, then ‘

b, + b, 1 + ... +b, <l 7 max (a,+a, ;+...+a,), (2.8)

n=v=m
where

L<l <1 <1 +e0(l) <+l

0(l,
0(l,

N’

IN\G—pTV)/r
=< > < (1 +e)lr=rtrlir — K(say).

k

N’

Hence (2.8) gives us

bn + bn+1 + ..+ bm

p—7
Iy

max
Lnzl g <Ly +£0(1y)

m
< : max (av+av+1+“'+am)
n lvélm<ln+£6(ln) -

L7 I\ : a, +a, 1 + ... +a,
< <—> <~> max e : (2.9)
ly <1

1°
=lpm <ly+eK0 (1) ¥
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l -7 l p—v
(l—"'> <1,<Z—V> <(1+¢)7?

since y<0, p—y>0. Hence (2.9) in conjunction with hypothesis (2.2) (a)

leads to (2.7) again.
After this we appeal to Theorem A with (1.1) and (1.2) (a) replaced by
(2.6) and (2.7) respectively, to obtain

In (2.9),

B(x)=B(,) = o) =0, Ly, >x>1, > 0.
From the last step and (2.6), we get, by using Lemma 3,
(1-7)(r-7) +§'}
X

for 0 <k<r

B*(x) = 0{

= o(x**#%) where B = (1——?—) (p—y) > 0.

Hence Xa, ! ?”” being summable (R, [, r), is also summable (R, /,, k)
by Lemma 2, i.e., Za,/,’ is summable (R, /,, k) for

k k k
a>v+ﬁ=v+(1—;>(p—v)=<1—~r—>p+;v- (2.10)

Since y>o0, may be taken as near to o, as we please 1), (2.10) immediately
gives us the conclusion (2.3).

In arriving at (2.3) we have tacitly assumed that ¢,> —oo. When
o, = — oo, we still reach (2.3) in the sense that g, = — oo for 0 <<k<r, as
we may see by taking y = —G (G positive and arbitrarily large) in the
preceding argument.

(B) As in (A), we confine ourselves to the hypothesis (2.4) (a), the
treatment of (2.4) (b) being precisely similar. Defining as in (A)

by + by, +...=(d{"=8) + a, 5" + ... (y>0,),
we see that (2.6) holds again, while (2.4) (a) implies

_ (b, +b,si+...4+b,)
lim max - = 0x(1), e >0,
nswoly, Zlg, <l, +el, ln

1) The truth of hypothesis (2.2) for some v, 6r < ¥ < p, implies its truth for any v’, 6, <y’ < v, so
that v may be replaced by v’.

*
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exactly as (2.2) (a) implies (2.7). Since now y>0a,>p, the above condition
in its turn implies

lim max (b,+b,4s1+...+b,) = 0g(1), e6>0.
nsoly <lpm <ly + el,
By Theorem A with hypothesis (1.2) (a) and a = b = 0, it follows that
Za,l,° is convergent for any ¢ such that ¢ >y>o¢, and therefore o, < o,.
But, in any case, o, >0, >0, for 0 <k <r and so we have the conclusion (2.5).
In the preceding argument we have supposed that ¢,< oo since g,= o0
implies trivially o,= 0.

§ 3. APPLICATIONS TO THEOREMS OF THE SCHNEE-LANDAU TYPE

Theorem II given next is the simplest of the theorems of the type men-
tioned above and it 1s a direct combination of Theorems I, B. Theorems V,
VI are generalizations, respectively of Ananda-Rau’s and Ganapathy Iyer’s
extensions of the Schnee-Landau theorem ([2], Theorem 9; [7], Theorem 10),
as given by Chandrasekharan and Minakshisundaram ([6], pp. 88-9,
Corollaries 3.73, 3.74). Theorems III, IV are apparently new counterparts
of Theorems V, VI, the newness consisting in the replacement of the two-
sided Tauberian conditions of the latter pair of theorems by analogous
one-sided conditions suitably supplemented.

THEOREM II. Suppose that (1) the Dirichlet series,

o0

da
s ?
1 ln

n .
s =0 +it,

is summable (R, 1., q) for some q >0 when 6> p, (i1) the sum-function f (s)
thus defined is regular for ¢ >n when n<p, and satisfies the condition

f(s) = O (|t]"), r>0, uniformly for o>=n+e>n,

(iii) the coefficients a, of the Dirichlet series satisfy ONE of the two altern-
atives (a), (b) of (2.2), but with 0 (x) = x"~ P! Then the Dirichlet series
is summable (R, 1, k), 0<k<r, for

(r—k)yp + kn

r

o=

Proof. By Theorem B, the Dirichlet series is summable (R, /,, r’), ¥’ >r,
for 6>n and hence o, <y <p. Therefore it is evident from the proof of
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