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ON THE DEGREE OF CONVERGENCE
OF FEJER-LEBESGUE SUMS

S. ALIANCIC, R. Bosanic and M. TowmiC

To the memory of J. Karamata

1. Let f be a 2n-periodic and L-integrable function and (o ,[f]) the
sequence of Fejér-Lebesgue sums of the Fourier series of f, defined by

B 1 : sind (n+1) (x —1)\?
o,[f]1(x) = MJ f(t)< Sind o) ) dt .

The classical result of Fejér [1] states that if fis a 2n-periodic, bounded
and R-integrable function, continuous at the point x, then
(1.1) lim ¢,[f](x) = f(x)
and the convergence is uniform on any closed interval where f'is continuous.
In particular, if fis a 2n-periodic and continuous function, then
1.2 e, [S1-fll = sup o, [f]1x)=f(x)| >0 (n—>0).
— 00 <X

Fejér’s result has been generalized by Lebesgue [2] who has proved
that (1.1) holds whenever f is a 2n-periodic and L-integrable function and

h

(1.3) Oflf(xﬂt) —f () |du =o0(h) (h—0).

At the same time, Lebesgue has shown that this condition is satisfied almost

everywhere. In particular, (1.3) holds at each point x where fis continuous.
For 2n-periodic and continuous functions more precise versions of

Fejér’s result (1.2) usually give estimate of the rate of convergence of the

sequence (o,[ f ]) to f either in terms of the modulus of continuity w, which
is defined by

op(h) = sup {|f (x) =f @) | |x' —x"| < h}
or in terms of the best approximation E,( f) which is defined by




.2

E, (f) = inf{[[f—t]l:teT,}

where T, is the set of all trigonometric polynomials of degree < n. The
following results are known.

If fis a 2n-periodic and continuous function such that w, (k) A™" is
decreasing for some # € (0, 1), then

1

(1.4) llon LS =i éAwf(—r;)
(see [3], Vol. 1, Ch. 3, Th. 3.16). For arbitrary 2zn-periodic and continuous
f we have the inequality

(1.5) o, [F1 = flI éBcof<

logn

n

) (nz2)

which in a somewhat weaker form was obtained by D. Jackson (see [4],
p. 64), and the inequality

c 1
1.6 o — < — | ——
(1.6 el =112 55 T o ()
which was obtained recently by S. B. Steckin [5]. Steckin’s inequality
follows from a still more precise inequality

12 2 .
Hon[f]1—=SII = " Eo E 1 (f)
and Jackson’s theorem which states that EL (f) < 12w, (1/n). Using the
well known properties of the modulus of continuity it is easy to see that
SteCkin’s inequality (1.6) is more precise than (1.5).

The aim of this paper is to obtain the analog of Steckin’s inequality
(1.6) for arbitiary 2zn-periodic and L-integrable functions and to show that
this result cannot be improved for certain classes of functions. As a measure
of deviation of o, [f](x) from f(x) we shall take the function w[f, x]
defined by

t
wlf,x](h) = sup {(2t)"1 [ 1f(x+u) —f(x)]du: 0<t§h} .
-t
Clearly, w[f, x] is a non-decreasing, real valued function and, by (1.3),
wl f, x] (h) — 0 (h — 0) almost everywhere. If f'is a continuous function we
have for 0 <t < h

J If(x+w) —f(x)[du £ | op(lu]) du = 2t (h)

—t —t
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and consequently
(1.7) wlf,x](h) < o, (h).
Our first result can be stated as follows.

THEOREM 1. Let f be a 2n-periodic and L-integrable function. Then we
have for all n = 0 the inequality

(1.8) IGn[f](x)—f(X)Ién—i—léoW[ﬂﬂ <k11>'

For continuous 2zn-periodic functions in view of (1.7) we obtain imme-
diately from (1.8) SteCkin’s inequality

oLl —fll < — iwf< " >

n+1,=% k+1

From Theorem 1 we can obtain similar results valid for all functions in
certain classes of 2zn-periodic and L-integrable functions. We shall consider
here two classes of these functions generated by a non-negative and increas-
ing real valued function Q defined on [0, 7] with ©Q (0) = 0. The first class
L (2) consists of all 2n-periodic and L-integrable functions f such that

A, = sup w[fg,(?)(h) <

The second, somewhat larger class L* (Q) consists of all 2n-periodic and
L-integrable functions f such that

X1
B, = lim sup wl/,x](h) <
B0+ Q(h)

From (1.8) follows immediately that forany fe L(Q)and n =0, 1, 2, ...
we have

10, [f16) —f (9| < ~2L 3 Q( " >

n+1,=, k+1
and so

sup lo, [f1(x) —f(x)] <3 sy wf, x](h)
nz0 1 ! < n > - O<hSp7t Q(h) .
2 Q }

n+1,=, k+1

(1.9)

On the other hand, if ¥ Q (n/k-+1) is a divergent series we have for every
fe L* (Q) the inequality
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(110)  tmewp IO @1 wIfx10)
h— 0 1 Z Q( n h—0 4 Q(h)
n+1,-% k+1

In order to show how (1.10) can be obtained from (1.8), observe that
for k = N, we have w [f, x] (n/k+1) < (B,-+¢) Q (n/k-+1). Consequently,
from (1.8) follows that for n = Nf'

10, LF100 S () | £ P x]<k+1) ;

+ 1420

+3(Bf+8) i Q( T )

n-+1 ) k+1
k=Nf +1

Since 2Q (n/k+1) is a divergent series, we can find N} such that for n> N}

NJ; . N
,EO Wl (k+1> = S,EO Q(k+1>'

Hence, for n > max (N,, N;) we have

:an[fyx)—f(x)igi(—?—"'i‘” i Q( . )

and (1.10) follows.

In order to show that the inequality (1.8) cannot be essentially improved
we shall consider the class L;, (2) < L (Q) of 2zn-periodic and L-integrable
functions f such that

el _
ol o -

We have then the following result.

Af=

THEOREM 2. There exists m (0 < m < M) such that for all n = 2 we
have the inequalities

(1.11) 5> (kﬂ)s swp [, [f10) — ()] <

k 2 SeLpr(R2)
3IM
> Q
n+1, =, \k+1

IA




I
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2. Proof of Theorem 1. The following proof of Theorem 1 is based
on a small modification of the classical proof of the Fejér-Lebesgue’s theorem
(see [3], Vol. 1, Ch. 3, Th. 3.9).

Let 0 <t < mand

Fo(t) = JIfGe4uw) + f(x—u) — 2f (x) | du.
We have then
(2.1 F.O) S| If(x+u) —f(x)|du £2tw[f,x] (@) .

Since

o, [f1x) —f(x) =

. )
J(f(x+t) ety — 2 (x ))<sm28i(n+1)t> ”

T n (n +1) nyit
we have

o, [f1(x) —f(x) | =

n/n+1 n

1 sin (n+1)1\?
moH4>(f +‘[ )U%*”)+f@-0—2ﬂﬂl< s >dt

0 n/n+1

<P, +0

<n-*

-

Since |sinnt | < n|sint| we have

n/n-,-l

1
(2.2) Pnég(nﬂ)j [fGe+t) +f(x—1) = 2f(x) | dt =

0
1( +1)F "
= — n .
2n *\n+1

Next, since sin § ¢ = t/n for ¢ € [0, n], we have

f [fGe+0) +f(x—1) — 2f(X),§.

T/nal

Qn =

2(n +1)

Using partial integration we find that
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1 1 T
(23) QnémFx(n)——zz(n+l)Fx<n—_—}_——l) +

Adding (2.2) and (2.3) and using (2.1) we find that

1
(2.4) lo, [f]1) —fx) | = —— w[f,x](m) +
n—+1

T

d
| vrraos.

7':/n+1

2r
n+1

+

Since w [f, x] is non-negative and non-decreasing we have

n

wlf,x](n) < Y w[f,x](n/k+1)

and o
- dt 1 n+1 . 1 " -
/n i1 1

and (1.8) follows from the last two inequalities and (2.4).

Proof of Theorem 2. The right hand side inequality (1.11) follows
immediately from (1.9). To prove the left hand side inequality (1.11) let
g.(t)y=MQ (I t—x l) if | t—x [ <7 and g, (¢+2n) = g, (¢). Then g, is
clearly a 2zn-periodic and L-integrable function. Since for 0 < ¢t < h < =

we have
t

J lgsGx+u) —g.(x)|du = M | Q(u)du £ 2t MQ(h),

—t —t
it follows that w [g,, x] (h) < M Q (h) and so g, € Ly ().
Next,

(2.5) sup

SeLp ()

We have first

0, [f1(x) = f) | = |oa [9:] (%) — 9. (x) | = 0, [9.] ().

int(n+1)r\?
sint (n )) ”

sindt

i n
an[gx] (X) = m Jv (gx(x_l_t) + gx(x—t))<



n

n(n+1)
70

n
rm

4M
n(n+1) J

n+1

v

Since |sin x | <

P Q(t)(

. .

sint(n+1)t
sintt

2
)m

2
)dt

sinf(n+1)t
sintt

Q(t)(

| x | it follows that

4 dt
2.6 = Q (1) (sind D)= =4
26 . ale]® —n(n+1)j () (sin3 (n+ 1) 1)
Tfnil
Since Q2 is non-decreasing, we have
(k+1)m
n+1
A M Q (1) (sin%( +1)t) dt
. = sink (n —
TC(n""l)k 1 2
n+1
(k1)
» 1 n+1
4M i kn n+1
> Q . sink(n+1)t)*de.
Tam+1) S <n+1><k+1) nzj (sin( ))
%
Since
(k+1)=
n+1
(sink(n+1)1)*dt = i
2(n+1)’
kn
n+1
we find that forn = 2
" 1 k " 1
A, = 2Mn~? o) zoMar Y _
i1 (k+1) n+1 ia (k+1)
Next, for2 <k < n
kn
n+1
dt n+1 1 kn
t i k(k—1) n+1
(k—1)=
n+1

L’Enseignement mathém., t. XV.




and so
krm kn
n+1 n+1
1 kn n kk—1) dt T dt
5 Q2 > 5 Q)— 2 —— Q).
(k+1) n+1 n+1(k+1) t 5(n+1) t
(k—=1) (k—=1)n
n+1 . n+1
Hence, for n = 2,
2M :
dt 2M dt
Ay 22— ¥ Q)5 z2z—=| Q0O -
57c(n+1)k > t St(n+1) t
(k-1)7t n
n+1 n+1
Since Q is non-decreasing, we have
n/2 n+1
a1 12
j o™ =_J Q(E>dtg- 5 g( i >
t T t T = k+1
T/n+1 2
Hence
2M !
2.7) 42— ¥ o
S5t (n+1) =, k+1

and the left hand side inequality (1.11) follows from (2.5), (2.6) and (2.7).
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