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ENTIERS ALGEBRIQUES
POLYGONES ET POLYEDRES REGULIERS

G. PoLya

A la mémoire de J. Karamata

On pourrait dire que ’objet de la science est de voir le principe général
dans les cas particuliers et les cas particuliers dans le principe général. En
tout cas il y a un précepte pédagogique qui me parait évident: L’introduction
d’une notion générale doit €tre précédée par des cas particuliers qui la
suggerent et suivie par des cas particuliers qui I'illustrent en en montrant
I'utilité. Mais ce précepte de sens commun est, malheureusement, souvent
négligé aujourd’hui: Le professeur ne parle que de notions générales que
Iéléve critique doit trouver vides de contenu et d’intérét. Descartes a
observé que le sens commun est, en effet, chose peu commune — hélas,
cela parait €tre le cas encore aujourd’hui.

Le but de cet article est d’illustrer la théorie des entiers algébriques
par des applications qui ne présupposent que les rudiments de la théorie.
L’intérét de la proposition du n® 1.2 sera montré par les conséquences
qu’on peut en tirer; voir les propositions des n°s 2.2 et 2.3 sur les polygones
réguliers et celle du n° 3.6 sur les polyeédres réguliers.

I. ENTIERS ALGEBRIQUES

1.1. Un entier algébrique a est, par définition, un nombre réel ou
complexe satisfaisant une équation de la forme

of +ay " +a, " P+ ta,_a4a, =0

ou ay, ay, ..., a,_y, a, sont des entiers ordinaires. Nous supposons connues
quelques propriétés élémentaires des entiers ordinaires ou rationnels

vy —3,—2,-1,0,1,2,3, ...

et nous utiliserons deux faits concernant les entiers algébriques:
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Si o et  sont des entiers algébriques

o+p, a—p e af

seront aussi des entiers algébriques.
Un entier algébrique qui est un nombre rationnel est nécessairement un
entier ordinaire.

1.2. Si les nombres
Ol et cosé
sont rationnels tous les deux, cos 0 aura une des cing valeurs suivantes :
1,4,0, —4, —1.
Par hypothése, 0/n est rationnel,

2nm

n
ou m et n sont des entiers ordinaires, n=1. Posons
Alors | |
. _ & —1=0 e (EH-1=0.
Donc &, E71 et
E+E M =2cos 0
sont des entiers algébriques. Par hypothése, cos 8 est rationnel, donc

2 cos 0 est un entier ordinaire. Mais la valeur absolue de 2 cos 6 ne peut pas
étre supérieure a 2, donc 2 cos 0 ne peut prendre qu’une des valeurs suivantes

2,1,0, =1, =2
qui seront actuellement prises lorsque 0 est

27
b 3 )n,
3

bl

0,

wi 3
ol 8

respectivement. Nous avons €tabli la proposition €énoncée.

1.3. Si les nombres
O/n et (tan 0)°

sont rationnels tous les deux, (tan 0)* aura une des cinq valeurs suivantes :
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0 ! 1,3 !
b 3 b 2 b 0 -
(J’ai pris la liberté de regarder co = 1/0 comme « rationnel ».)
Par hypothése, 20/n et

sont rationnels tous les deux et ainsi nous n’avons qu’a appliquer la pro-
position du n° 1.2.

1.4. Excepté les quatre cas suivants: n = 1,2, 4, et 8§, tan 2n/n est un
nombre irrationnel pour chaque entier ordinaire positif n.

En observant que \/ 3 estirrationnel, on déduira facilement cette proposi-
tion de celle du n° 1.3 %).

II. POLYGONES REGULIERS

2.1. Nous considérons un systéme de coordonnées rectangulaires dans
le plan et nous appellerons point du réseau plan un point (x, y) dont les
deux coordonnées x et y sont des entiers ordinaires.

Si un polygone d n cétés est équiangle et tous ses sommets sont des points
du réseau plan, n est nécessairement 4 ou 8.

Appelons une ligne droite ligne du réseau si elle contient deux points
différents du réseau plan. La tangente de I'angle qu'une ligne du réseau
fait avec ’axe des abscisses est évidemment rationnelle. Je dis que la tan-
gente de 'angle compris par deux droites quelconques du réseau est aussi
rationnelle. En effet, soient « et f les angles que ces deux droites font
avec l'axe des abscisses. L’angle compris par elles est «a—f et

tan o« — tan 8

tan(a —p) = .
@=p 1 + tan o tan f8

L’angle extérieur formé par deux cdtés consécutifs d’un polygone
équiangle & n cotés est 2n/n. Dans notre cas, par hypothése, les deux cdtés
sont des droites du réseau et ainsi tan 2n/n doit étre rationnelle. Par le
théoréme du n° 1.4, n est égal 4 4 ou a 8.

1) La proposition du n° 1.2 a été énoncée et démontrée différemment par H. HADWIGER, Elemente der
Mgth., 1, 98-100, 1946. Elle n’est en effet que le cas particulier le plus simple de la proposition générale
suivante: Soient k et n deux entiers ordinaires premiers entre eux, n > 2. Alors 2 cos (2mtk/n) sera un entier
algébrique de degré ¢ (n)/2; voir D. H. LEHMER, Amer. Math. Monthly, 40, 165-166, 1933. (Un entier algé-
brique est rationnel s’il est de degré 1; si ¢ (n)/2 = Ll onan = 3, 4 ou 6.)
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| Le lecteur dessinera un octogone équiangle (chaque angle = 3n/4) dont
~les huit sommets sont des points du réseau plan.

2.2. Un polygone régulier dont tous les sommets sont des points du réseau
- plan est nécessairement un carré.

Le cas de I’octogone admis par la proposition du n° 2.1 sera exclu par
la proposition du n° 2.3.

2.3. Nous considérons maintenant un systéme de coordonnées rectan-
gulaires dans I’espace. Nous appellerons point du réseau spatial un point
(x, y, z) dont les trois coordonnées x, y et z sont des entiers ordinaires.

Si tous les sommets d’un polygone régulier a n cétés sont des points du
réseau spatial, n est nécessairement 3, 4 ou 6.

Trois sommets consécutifs du polygone régulier P a n cOtés déterminent
un triangle isocéle 7. Deux cotés de 7, de la méme longueur ¢, sont des
cotés adjacents de P et la base de T, de longueur d, est une diagonale de P.
L’angle opposé a la base de T (un angle de P) est égal a n (n—2)/n. On a

d*> = 2¢* — 2¢* cosnt (n—2)/n.

Mais les sommets de 7 sont des points du réseau, par conséquent c? et d*
sont des entiers ordinaires et ainsi cos © (n—2)/n est rationnel. Donc n = 3,
4 ou 6, par la proposition du n° 1.2.
Les points
(1,0,0), (0,1,0), (0,0,1)

sont les sommets d’un triangle équilatéral et les points

(O: 1’ _1)7 (1909 —1)’ (1, “190)3 (Oa _17 1)5 (—1:07 1)’ (_]’ 130)

sont les sommets d’un hexagone régulier.

C’est I’application de la proposition démontrée aux points du réseau
spatial de la forme particuliére (x, y, 0) qui joue un role au n°® 2.2.

Est-il possible que tous les sommets d’un polyédre régulier soient des
points du réseau spatial ? Oui, pour le tétra¢dre, cube et octaedre, non pour
le dodécaédre et I'icosaedre; en effet, dans ces deux derniers cas il y a des
pentagones réguliers formés par cinq sommets ').

1) La proposition du n° 2.2 peut étre démontrée par des considérations géométriques élégantes; les
démonstrations données par F. KARTESZI, Matematikai és fizikai lapok, 50, 182-183, 1943 et W. SCHERRER,
Elemente der Math., 1, 97-98, 1946 sont semblables mais différentes. La démonstration de la proposition
du n° 2.3 est due 4 H. E. CHRESTENSON, Amer. Math. Monthly, 70, 447-448, 1963; elle est applicable & un
réseau « cubique » a dimension quelconque.
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IIT. POLYEDRES REGULIERS

3.1. Nous considérons I'angle diédre formé par deux faces adjacentes
d’un polyédre régulier a lintérieur du solide. Nous allons désigner cet
angle diédre par

T, H, o, D, ou /
selon qu’il s’agit d’un
tétra-, hexa-, octa-, dodéca-, ou icosa-

édre régulier. Le hexaédre régulier est le cube, H = n/2. On peut calculer
tous ces angles par trigonométrie sphérique; notons les résultats:

cos T=2,cos H=0,cos O = —1,cos 2D = — 3, cos 2] = ;.

Il résulte des trois premicres valeurs que
(H) T—-2H +0 =0

ce que le lecteur peut aussi voir par géométrie élémentaire. Cette relation (1)
est unique en son genre — c’est un premier apergu de notre résultat principal
qui sera formulé précisément au n° 3.6.

3.2. Les rapports
T/H, O/H, D/H, IH

sont irrationnels.

Cette proposition résulte immédiatement des valeurs rationnelles des
cosinus données au n° 3.1 et du théoréme du n° 1.2.

3.3. Le rapport T/ O est irrationnel.

En effet, si 7/O était rationnel, H/O le serait aussi par la relation (1)
du n° 3.1. Mais H/O est irrationnel par le théoréme du n° 3.2.
3.4. Si les entiers ordinaires 1, m’, h' et k' satisfont & I’équation

IT +m'I =h"H+Ek'D,
alors
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Nous pouvons admettre sans perte de généralité que m’ = 2metk’ = 2k
sont des nombres pairs et A’ = 44 est divisible par 4. En effet, si ce n’était
pas le cas il suffirait de multiplier la relation donnée par 4 et de changer la
notation.

Nous voulons donc établir que la relation

(*) IT + 2mlI = 4hH + 2kD

est impossible en nombres entiers ordinaires /, m, h et k qui ne sont pas
tous = 0. Dans le présent n° 3.4 je ne considére que le cas ou &, / et m sont

tous positifs. Puisque 4H = 2r, la relation (*) est équivalente a la suivante
(**) AT gi2ml _ ,i2kD

Mais, voir n° 3.1, on obtient, en développant les puissances des bindmes,

gi2kD —3 —id\f
5

| 2i /2 _
T =<—_—1+ l\/2> — L+ L3

3

K+ K'i,

. 1—4i . /5\™ _

ou K, K', L, L', M et M' sont des nombres rationnels.

Observons que K’ = O entrainerait K = +1, et ainsi D/x serait rationnel,
ce qui n’est pas le cas, voir n°® 3.2. Donc K’ # 0 et par le méme raisonne-
ment L' # 0, M' # 0.

Il suit de (**) que

LM./2+LM . J5=K".

Observons que L = 0 entrainerait M # 0 et ainsi \/5 serait rationnel.
Donc L # 0 et par un raisonnement semblable M # O.

Donc LML'M’ # 0. Mais en €levant au carré I’équation précédente on
obtient que

LML M'./10
est un nombre rationnel. Cette conséquence absurde démontre que (*) est
impossible si /, m et k sont positifs.

3.5. Le cas traité au numéro précédent, ou k, / et m sont positifs, est
décisif: Les autres cas se laissent traiter de la méme maniére ou sont encore
plus simples.
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Par exemple, si /<0 on développera la (—/)iéme puissance du bindme
: 1-2i/2\7" _

et on aura les mémes conséquences qu’au n° 3.4.

Si /=0c¢et m =0 on a nécessairement k = 0; dans le cas contraire,
e’® serait, en vertu de (**), une racine de l'unité ce qui contredirait la
proposition du n° 3.2.

Enfin le cas ou / = 0, m # 0 et k # 0 est aussi exclu; on en pourrait
conclure, voir I’équation (**) et les formules et les raisonnements du n° 3.4

qui la suivent, que K’ et M’ sont rationnels et non-nuls et que
M+ Mi/3=K+K'i

donc que /3 est rationnel ce qui est absurde.

3.6. Si Xy, X,, X3, X4 ef X5 sont des entiers ordinaires et
X1 T +x,H+x30 +x,D +x51 =0,
on a nécessairement
2xy = =X, = 2x3, X, =x5s =0.

Voici un autre énoncé de la méme proposition:

Excepté une transformation triviale [’équation (1) du n° 3.1 est [’unigue
relation linéaire homogéne a coefficients entiers ordinaires entre les cing
angles, T, H, O, D et I.

Le cas de cet énoncé ol x; = 0 a été démontré aux n° 3.4 et 3.5.On y
ramene le cas ol x; # O et la relation considérée n’est pas une transformée
triviale de (1) en éliminant O 1).

(Regu le 16 Juillet 1968)
Dept. mathematics

Stanford University
Stanford, California 94305
Etats-Unis

1) La proposition du n° 3.6 est due a H. LEBESGUE; voir Annales de la Société polonaise de Mathéma-
tique, 71, 193-226, 1938.
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