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MATRIXTRANSFORMATIONEN MIT VOLLER REICHWEITE

W. Meyer-König und K. Zeller

J. Karamata zum Gedächtnis

Die gebräuchlichsten Limitierungsverfahren beruhen auf Matrixtransformationen

der Gestalt
00

(1) KX a,lksk0, 1,...)
k 0

(wobei von den Reihen gewöhnliche Konvergenz verlangt wird). Unter
diesen Transformationen interessieren besonders solche mit voller Reichweite

(range), bei denen also jede Folge {/„} als Bildelement auftritt.
Eidelheit [2] gelang es schon 1937, die betreffenden Matrizen genau zu
charakterisieren. Weitere Untersuchungen auf diesem Gebiet stammen

von Pölya, Petersen, Baker-Thompson und Niethammer (siehe die Literaturangaben

in [4]) sowie von Benson [1]. Anwendungen in der Limitierungs-
theorie ergaben sich vor allem bei den Kreisverfahren (vgl. [5] S. 141—142).

Unter anderem bewies man Unvergleichbarkeitssätze : Zu gewissen
permanenten zeileninfiniten Verfahren gibt es kein stärkeres permanentes
zeilenfinites Verfahren (siehe [3]).

Wir geben hier eine besonders einfache und prägnante Charakterisierung
der Matrixtransformationen mit voller Reichweite. Diese Charakterisierung
gibt tieferen Einblick in die Struktur des Problemkreises, insbesondere auch

bezüglich der erwähnten Unvergleichbarkeitssätze, und erleichtert manche

Anwendungen und Verallgemeinerungen. Schon Eidelheit [2]
verallgemeinerte sein Problem zu einer Fragestellung über Linearformen in
F-Räumen. Wir gehen entsprechend vor. Die nötigen funktionalanalytischen

Grundbegriffe findet der Leser in [5]. Weitere Erläuterungen stehen
hinter dem folgenden Satz (sowie in [4]).

Satz. Die fn (n 0, 1, seien stetige Linearformen in einem F-Raum
5 [fflPj]- Dann sind die beiden nachstehenden Aussagen äquivalent.

I. Das Gleichungssystem

(2) fnOÖ cn (n =0,1,...)



234 —

ist für beliebige cn lösbar.

II. Es gibt ein zu [// äquivalentes Halbnormensystem [(/j) für welches

(3) ord,,/n n (n » 0, 1,

gilt.
Die Topologie in / wird also ursprünglich durch gewisse Halbnormen

/V/q,... erzeugt. Äquivalenz der Halbnormsysteme bedeutet, dass die q}
dieselbe Topologie delinieren. Anders ausgedrückt: Jedes qk ist in [£y; pj]
stetig, kann also durch endlich viele p} majorisiert werden (analog zu (4)):
und Entsprechendes gilt für j\ in f A : e/J.

Die Ordnung ord wird so definiert : Jede stetige Linearform/in [Jy; r/J

genügt einer Abschätzung der Gestalt

(4) j/(.i)! M U/,,(x) X f- qmix)) (.Ï6 p-).

Das kleinste w, für das eine solche Abschätzung besteht, nennen wir
die Ordnung \on / bezüglich der qr wobei wir für die triviale Linearform
eine Sonderregelung treffen:

(5) ord f - Min m{ f x 0); ord f — 1 pf 0) •

Beuels tit's Sil tics.

a. Aus 1 folgt II: Wir beginnen mit einer Yorbetrachtung. Aus den/,
bilden wir eine beliebige folge gn des Tv ps

(b) </„ enU /o 4- -r cnnfn (mit cnn r1 0).

Auch die gn besitzen dann die in I genannte Eigenschaft. Daher gilt

(7) -1 < ord r qn(n =0,1,...), ordr qn -* x (/i-*x).
Andernfalls wären nämlich gewisse Null oder einer Wachstumsbedingung
unterworfen (vgl. [4] S. 3). Also gibt es ganze Zahlen ln mit

(S) -!</„- ord;, qn (n 0, 1, und /„ j x (/i-*x)
(unabhängig von der Wahl der gn in (6): man betrachte für jedes n ein gn

minimaler Ordnung). Durch evtl. Verkleinerung erreichen wir

(9) /0 0 und

so dass die In alle Zahlen 0, I, durchlaufen.
Nun setzen wir

(10) </„(!) î/„(ï)| + pkn(î)(mit 1; 0).
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Wegen der Stetigkeit der fn und der Eigenschaft (9) sind die Halbnormsysteme

pj und qj äquivalent. Weiter ist offenbar ordqfn ^ n für alle n.

Tatsächlich gilt sogar ordqfn n, wie der nachstehende Widerspruchs-
schluss zeigt. Für ein bestimmtes n sei ordqfn < n. Dann besteht eine

Zerlegung (vgl. [5] S. 25)

(11) fn cnQfo + + + h mit ordph<kn.± ln-1

Bringt man nun die fk auf die linke Seite, so erhält man ein gn, das eine

/>-Ordnung < ln besitzt und damit (8) verletzt.

b) Aus II folgt I: Die Methode aus [4] S. 3 führt zum Ziel (Zurück-
führung auf Matrizen mit überwiegenden Hauptdiagonalelementen).
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