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SUR QUELQUES RELATIONS ARITHMÉTIQUES

S. Mandelbrojt

A la mémoire de Jean Karamata

Nous désirons démontrer quelques faits — inégalités ou égalités — dont
les énoncés sont totalement dépourvus de toute notion de la théorie des

fonctions. Il s'agit en réalité uniquement des propriétés des suites simples,

ou doubles, assez inattendues d'apparence.
Mais les démonstrations, que nous fournissons de ces faits, sont basées

néanmoins sur des théorèmes connus, parfois difficiles, de la théorie des

fonctions analytiques. Le passage de ces théorèmes « analytiques » à nos
énoncés est assez simple. Quelques-uns de ces énoncés peuvent, à leur tour,
fournir immédiatement les théorèmes d'Analyse sur lesquels ils se basent.

Il serait, par conséquent, très intéressant de pouvoir démontrer nos énoncés

directement d'une manière élémentaire; c'est-à-dire de fournir une
démonstration dépourvue de toute notion de la théorie des fonctions.
Chose à laquelle je ne suis pas parvenu.

Théorème 1. Soit {Àn} une suite de nombres positifs croissants (strictement)

vers l'infini, et soit {an} une suite de nombres complexes.
Supposons les deux conditions suivantes satisfaites :

n
(1) lim — D < oo

«—>eo

(2) lim sup logJa"* o, inf (A„+1 A„) > 0,
n—>co 'ln

et posons pour x>0, assez petit,

(3) A(x) lim inf [m! |£a„ ùxXn\
m—>00

Pour 0 < x < 1, la fonction

B (x) A2 (x) — log2 x
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est non négative, non croissante, et on a :

B (x) ^ n

Théorème 2. Soit {an} une suite de nombres entiers, satisfaisant à la
condition

y loglfl«l Alim sup 0
n—>co ^

Posons pour x>0

dn(x) a0xn + C\ al x"-1 + + an

î
D(x) lim sup \dn(x)\~n.

h—>-co

La fonction D (x) est continue à droite au point x 0, elle possède une dérivée
à droite en ce point, D + (0); on a

id; (o)i ^ i.
Et, en posant,

D+ (0) cos ncp

cp est un nombre rationnel.
Pour une suite {!„} (0<11<X2, Àn-+co), posons:

n(x) ;

Et, pour tout 0 < a < 1 :

N(x) - N(ax)
D (a) lim sup

x(l — a)

On sait que lorsque a->l, D (a) tend vers une limite DM, appelée densité

maximum de {Xn} (Pôlya). En désignant par D• la densité supérieure
de

N(x)
D- lim sup

*

on a D- ^ Dm.
On a le théorème suivant qui généralise le théorème 1.
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Théorème 3. Soit {Àn} (0<21<22, 2„->oo); supposons que (2) est

satisfait et que D <go. Soit A (x) la fonction définie par (3). La limite

(4) lim (A (x) +logx) h
x-^0

existe. La fonction

(5) B(x) A2(x) - (log x + h)2

est non-négative, non-croissante, et

(6) A2 (x) - (log x - h)2 < D2M

Si D existe c 'est-à-dire si (1) est satisfait h 0.

On voit, d'après la dernière ligne de cet énoncé que le théorème 3

contient le théorème 1.

Commençons donc par la démonstration du théorème 3.

Pour s a+it, la somme (-l)m 1 an Lnne~knS représente, pour g>0 (où
cette série converge, en vertu de D' <oo et de (2)),f(m} (s), la dérivée rnieme

de la somme /(V) — Ian e~XnS.

A~x (e~a) représente, par conséquent, le rayon de convergence de la série

de Taylor de f (s) autour du point g.

En désignant par gh l'abscisse d'holomorphie de la série Lan e~Àn\ la

relation (4) est immédiate avec h — Gh- (La quantité h, qui est évidemment

non négative, peut être égale à +co, et, dans ce cas A (e~a) oo pour
tout a>0.)

Des considérations simples (existence d'au moins un point singulier sur
le cercle de convergence, d'une série de Taylor), montrent que B (x) est

une fonction non croissante; et, le théorème de Polya-V. Bernstein [1] d'après
lequel/ (s) admet au moins un point singulier sur tout segment de longueur
2tcDm de l'axe d'holomorphie g gh, montre que

0 ^ B (x) ^ n2 Dh

Ce qui fournit (6).
Pour la démonstration du théorème 2 remarquons que, d'après notre

théorème concernant les arguments des singularités situées sur le cercle de

convergence d'une série de Taylor, ncp représente l'argument de la singularité
de la série Lan zn située sur \z\ 1, la plus voisine du point z 1 [3]. Or,
d'après un théorème classique de Carlson [2], si les an sont entiers et si le

rayon de convergence de cette série est égal à un, seulement un des deux
cas suivants peut se présenter:
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1) le ceicle de convergence est une coupure,

2) la série représente une fonction de la forme P(z)/Q(z), P et Q étant
des polynômes, Q (z) n'admettant que des racines entières de l'unité
comme zéios. Il en résulte que, soit <p 0, soit cp pjq, où p et q sont
entiers.

Le théorème qui suit peut être considéré comme une traduction pure
et simple d'un théorème d'Ostrowski [5] concernant les singularités d'une
série de Dirichlet (à la valeur des constantes considérées près)

Théorème 4. Soit D'la densité supérieure de la suite {An) (0 < Ât < À2, ;

An-> co); supposons que (2) est satisfait et que :

lim inf (An+1 — Àn) h > 0

On a pour x^O:

A (x) — 3 log (hD)D- + AnD- — logx

Les constantes de cette dernière inégalité sont obtenues en utilisant un
théorème que j'ai énoncé dans [4].

Remarquons que l'expression D (x) de la page 2 représente le rayon de

convergence de la série ldn (x)/w-fx)n, qui, pour |w| assez grand, donne
la fonction (de w) représentée par (Iajwn) (w+x)/w. On obtient alors facilement,

en utilisant les raisonnements qui ont servi pour démontrer les

théorèmes 1 et 2, et en y posant x 1, les deux énoncés suivants, qui portent
uniquement sur les suites de nombres:

A. Si les An sont entiers, si

log kllim sup 0
n—>oo

et. si la densité

n
D lim —

K

existe, on a

lira sup (| £ CAm"a„|m ^ 1|
m—>oo
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B. Siles a„ sont entiers, et si

log kllim sup 0,

on a

lim SUp | Yj W*ß + l\
m—>co n^m

où ß est un nombre rationnel.

Et, enfin, en posant dans le théorème 1, % 1, on obtient

C. Si

inf (2„+i-A„) > 0

et si D existe, on a

lim inf |m!QT an A^)"1 |m ^7zD
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