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UNE HIERARCHIE DES PROBABILITES
PLUS OU MOINS NULLES
APPLICATION A CERTAINS NUAGES DE POINTS

M. Paul LEvy

A la mémoire de J. Karamata

1. De nombreux auteurs, notamment Hausdorff, Besicovitch et Cara-
théodory, d’une part, Emile Borel et Fréchet, d’autre part, se sont intéress€s
aux ensembles de mesure de Lebesgue nulle, avec I'idée d’établir une hié-
rarchie entre eux. Un probabiliste peut avoir une idée analogue et considérer
des probabilités « plus ou moins nulles ». Ainsi, un point aléatoire étant
uniformément réparti dans une sphére, on peut étre tenté de dire que, la
probabilité qu’il soit dans un plan diamétral étant o« = 0, il a une proba-
bilité o?, « encore plus nulle », d’étre sur un diamétre, intersection de deux
plans.

L’objet du présent travail est d’esquisser une théorie de ce genre, dans
laquelle les probabilités plus ou moins nulles seront représentées par des
fonctions (r) tendant plus ou moins rapidement vers zéro avec la variable r.
Deux événements seront indépendants si la probabilité que tous les deux
solent réalisés est le produit de leurs probabilités.

Cette extension du calcul des probabilités, qui sera précédée par quelques
remarques simples (n° 2 a 4), semble pouvoir étre utile dans 1’étude de
certains nuages de points, tels que ceux des points multiples de la courbe
du mouvement brownien plan. Les problémes qui se posent ainsi sont
difficiles ; mais I'idée semble assez importante pour que, & défaut de résultats
précis, nous présentions un travail qui contient surtout des énoncés de
problémes, quelques conjectures, et une explication intuitive d’un théoréme
de Dvoretsky, Erdds et Kakutani.

2. La notion qui nous servira de base est celle de mesure au sens de
Hausdorff-Besicovitch. Rappelons la définition de ce que nous appelons
par abréviation ¢-mesure d’un ensemble & et désignerons par u(& l(p); c’est
en réalité¢ une mesure extérieure. Nous plagant dans I’espace euclidien & N
dimensions, Ey, nous ne considérerons comme acceptables que des fonc-
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tions ¢ (r), s’annulant avec r, chacune étant définie, continue et croissante
au moins dans un petit intervalle (0, p) (p >0), ot ¢ (r)/r" est, au contraire,
soit constant, soit constamment décroissant. Ainsi la fonction r*est accep-
table si 0 < o < V.

Soit maintenant un ensemble & < Ey. Supposons-le recouvert par un
ensemble fini ou dénombrable de sphéres de rayons r, tous <C r, et désignons
par s (r) la plus grande borne inférieure de ) ¢(r,) pour tous les recouvre-
ments vérifiant cette condition. C’est évidemment une fonction non crois-
sante de r, de sorte que sa limite s (0) est bien définie. C’est cette limite qui
est la p-mesure m (& | @) de &. C’est un nombre positif, qui peut étre nul
ou infini.

Il est commode (et c’est ce que nous ferons), de ne considérer en méme
temps que des fonctions appartenant a une méme échelle de croissance,
c’est-a-dire a un ensemble & de fonctions tel que, si ¢, € # et ¢, € F,
¢, (r) — @, (r) a un signe constant au moins dans un petit intervalle (0, p).
Nous supposerons de plus que ¢ € % entraine cep € # (Vc¢>0). Alors
¢, (r)/@, (r) a toujours, pour r = 0, une valeur limite ¢, qui peut étre nulle
ou infinie.

Il est commode aussi, mais non essentiel, de ne considérer que des
fonctions d’allures réguliéres. Pour fixer les idées, on peut supposer que F#
contienne la fonction ¢ (r) = r, que @ €% entraine co*c F (Vcet a>0) et
log p € F, et que @ € F, Y € F entrainent @ € #. Naturellement, dans
une échelle #, nous n’utiliserons que la section qui contient les fonctions
acceptables.

Cette section peut étre divisée en classes d’équivalence. Nous dirons que
@, et @, sont strictement équivalents si la limite ¢ de leur rapport (r—0)
est un; alors u (& | Q) = u(& | ¢,). Ces fonctions sont équivalentes au sens
large si cette limite est finie et >0; alors u (& | ¢y) et u (€ | @,) sont en
méme temps nuls, ou en méme temps infinis, ou en méme temps finis et > 0.
Ces classes jouent un role essentiel si on cherche a associer a un ensemble
donné & = Ey une fonction ¢ € & telle que u (& | o) = 1Joul0<u (& I Q)<
oo]. Pour chacun de ces deux problémes, c’est une classe d’équivalence qui
est en réalité associée a &.

3. Rappelons a ce sujet quelques résultats connus ). D’abord, a toute
fonction acceptable ¢ on peut de bien des maniéres associer des ensembles &
< Ey dont la p-mesure soit un. Si r¥/¢(r) s’annule avec r, on peut méme en

1) Paul LEvy, C. R. Acad. Sc., 261 (1965), pp. 295-298 et erratum p. 2577; 263 (1960), pp. 540-542.
Pour le cas N = 1, le premier résultat cité avait été obtenu par A. Dvoretsky dés 1948.
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trouver dans n’importe quelle petite sphére. La réciproque n’est pas vraie.
Etant donnée, en effet, une fonction acceptable ¥ € #, nous pouvons lui
associer une suite infinie d’ensembles &, tels que pu (&, ] ) = n. Soit &
leur réunion. Si une fonction ¢ € F est o (%) (=0, on a u (&, |¥) =0
et par suite u (& l @) = 0; dans le cas contraire, on a u (& | Q) > u(é, l Q)=
n, quel que soit n, et par suite p (& [ @) = o0. On doit donc associer
4 &, non une classe de fonctions ¢ équivalentes, mais une coupure dans &,
u(& | @) étant nul ou infini suivant que ¢ est au-dessous ou au-dessus de
cette coupure.

Cette construction d’un exemple d’ensemble & auquel ne s’associe
aucune fonction @ € & est due & M. D. G. Larman. On peut obtenir le
méme résultat sans se restreindre aux fonctions d’une famille 4. Divisons
a cet effet Ey en une infinité de pavés égaux V), et, &; étant un ensemble
intérieur a ¥, désignons par &, un ensemble égal & &, et intérieur a V,,
et par & la réunion de tous les &,. La fonction ¢ étant maintenant bien
définie pour r assez petit, mais a cela prés absolument quelconque, il est
bien évident que u (& | @) est nul si pu (&, | @) = 0 et infini dans tous les
autres cas.

4. La ¢@-mesure étant une mesure extérieure, on a toujours, pour la
réunion & d’un nombre fini ou d’une infinité dénombrable d’ensembles &,,,

(1) n@le) <zu(é,lo),

cette inégalité devenant une égalité dans le cas des ensembles séparés, c’est-
a-dire que les intersections deux a deux des fermetures &, sont vides ou du
moins de ¢p-mesures nulles. Ces faits évidents ont été utilisés au n° 3 ci-dessus.

Dans le cas ot ¢ (r) = cy r" (cy étant le volume de la sphére de rayon
un), la @-mesure se réduit a la mesure extérieure de Lebesgue. On sait que
ce n’est pas une vraie mesure, c’est-a-dire qu’elle n’est pas une fonction addi-
tive d’ensemble. Elle devient additive, et méme complétement additive, si
on ne consideére que les fonctions mesurables (au sens de Lebesgue). Or les .
fonctions non mesurables sont en un certain sens les plus nombreuses.
Ainsi, si on choisit au hasard un ensemble & en faisant pour chaque point x
un tirage au sort a pile ou face indépendant des autres et en prenant pour &
I’ensemble des x pour lesquels on a obtenu pile, ’ensemble obtenu n’a
aucune chance d’€tre mesurable. Pourtant, on ne peut pas définir un ensemble
non mesurable particulier sans utiliser I’axiome du choix. Comme le disait
Emile Borel, si deux savants parlent d’'un ensemble non mesurable, ils ne
peuvent pas étre sirs de penser au méme ensemble. En d’autres termes, on

L’Enseignement mathém., t. XV. 15
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ne peut pas donner d’exemple concret d’un ensemble qui ne soit pas
mesurable.

Dans le cas des fonctions ¢ pour lesquelles /¢ (r) tend vers zéro avec r,
la théorie de Lebesgue ne s’étend pas sans changement, parce qu’a I'inté-
rieur d’une sphére un ensemble et son complément ne peuvent pas avoir
en méme temps une ¢@-mesure finie. Carathéorody a tourné la difficulté en
se restreignant aux sous-ensembles d’un ensemble donné de @-mesure finie.
Dans ces conditions, la théorie de Lebesgue se généralise sans difficulté.
Mais les remarques du précédent alinéa conduisent a se demander si on ne
peut pas définir autrement une classe € trés vaste d’ensembles qui seraient
réellement p-mesurables. Nous entendons par que, dans cette classe, u (& | Q)
serait une fonction d’ensemble complétement additive, c’est-a-dire que,
si & est la réunion d’un nombre fini ou d’une infinité dénombrable d’en-
sembles @, de cette classe, et si &, est la partie de &, qui n’appartient 2
aucun des &, d’indices v<mn, on aurait toujours

(2) n(€ o) = Zu(é, 1 9).
En d’autres termes, pour des ensembles disjoints, la mesure serait complete-
ment additive. Pour deux ensembles, on aurait

(3) p(& o) = u(@yle) +pn(6219) —u(d108,19),

formule qui se généralise par une formule connue de Poincaré pour le cas
de n ensembles. La formule (2) devient évidente si un des u (&, [ @) est
infini.

La question qui se pose, et que je n’ail pas résolue, est la suivante: Les
ensembles qu’on peut nommer individuellement, sans utiliser [’axiome du
choix, sont-ils toujours @-mesurables, quelle que soit la fonction ¢ ? C’est,
je crois, un probléme difficile, mais qui mérite qu'on y réfléchisse. Si la
réponse est négative, peut-on du moins définir des opérations dont on soit
sir qu’elles n’introduisent que des ensembles ¢-mesurables ? En tout cas,
dans la suite, nous ferons I’hypothese suivante: il ne peut s’agir que d’en-
sembles d’une famille borélienne a [’intérieur de laquelle, quelle que soit la
fonction @, la @-mesure soit complétement additive, c’est-a-dire que la
formule (2) s’applique toujours, que les termes du second membre soient
nuls ou non, et finis ou infinis. La ¢-mesure est alors une vraie mesure
et on peut lui donner une interprétation probabiliste. C’est ce que nous
allons faire.

5. Soit donc un ensemble &*, réunion de n ensembles séparés égaux
&, (v=1,2,..,n); si ces ensembles sont associés a une fonction ¢ telle
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que leur p-mesure soit un, celle de &* est n, et c’est ¢* = @/n qui doit étre
associé a &* pour que I'on ait u (&* | @*) = 1. Si on choisit au hasard un
point dans &%, les différents &, étant également probables, c’est 1/n = o*/p
qui mesure leur probabilité.

Pour établir une hiérarchie des probabilités nulles, nous n’avons qu’a
étendre cette remarque au cas ol un ensemble & = £* n’est qu’une partie
négligeable de &*, de sorte que ¥ (r) = ¢* (r)/¢ (r) tend vers zéro avec r.
C’est alors ce quotient, et non ¢, qu’il faut considérer, pour dire que sa
décroissance plus ou moins rapide peut mesurer en quelque sorte la pro-
babilité plus ou moins nulle qu'un point de &* appartienne a &.

Le cas sans doute le plus important est celui ou &* est la sphére de
rayon un; ¢* (r) est alors le volume ¢y " de la sphére de rayon r.

De toute fagon, si &&= &*, si on définit la probabilité (éventuelle-
ment nulle) qu’un point de & appartienne & & par la formule

(4) Pr(&16) = {o¢'lo},
@' étant la fonction associée a &”, et le signe { - } indiquant que c’est la rapi-
dité de la décroissance de ¢'/¢ pour r trés petit qui nous intéresse, on a

(5) Pr(&1&%) = Pr(6| &) Pr (8| &%),

ce qui généralise une des formules fondamentales du calcul des probabilités.
I1 est alors naturel de dire que & et &’ sont indépendants dans &* si on a

(6) Pr(&18'n&* = Pr(&| &%),
et par suite, en sous-entendant qu’il s’agit d’un point choisi dans &%,
(7) Pr{&né’) = Pr&-Pré&',

c’est-a-dire que la probabilité de la réalisation simultanée de deux événe-
ments indépendants est donnée par la méme formule que dans le calcul
des probabilités classique.

L’intérét de cette définition est qu’elle suggére I'idée que, si & et &’
dépendent de deux séries de tirages au sort indépendantes 1’une de 'autre,
on peut appliquer la formule (7)1).

6. Nous allons voir ce que peut donner I'application de cette idée a
I’é¢tude des nuages homogenes.

Nous appelons niiage un ensemble de points de mesure de Lebesgue nulle,
ne contenant aucun continu, et tel que son intersection avec n’importe
quel voisinage de n’importe Jequel de ses points ait la puissance du continu.

X 1) Re’marquons tou.tc‘efois que, s’il s’agit d’un tirage au sort dépendant d’une loi continue (c’est-a-dire
qu’aucun n’a une probabll;te ppsltlve) son résultat est pr. s. un objet qu’on ne peut pas nommer individuelle-
ment. Nous faisons donc implicitement une hypothése un peu plus hardie que celle énoncée au n° 4.
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Pour définir '’homogénéité d’un nuage &, il faut supposer une mesure
définie sur sa fermeture &. Considérons d’abord le cas oll g est un volume
V< Ey (pouvant €tre une réunion de parties séparées). Désignons par e
Uintersection de & avec un volume vV, fini et de mesure m (v)>0, et
associons & e une division de I’échelle & en trois classes, une classe infé-
rieure pour laquelle u (e | @) = 0, une classe supérieure pour laquelle
U (e [ @) = o0, et une classe intermédiaire. Nous dirons que le nuage e est
homogeéne si cette division est indépendante de v.

Dans le cas ou Ja classe intermédiaire existe, nous dirons qu’un nuage
est tout a fait homogene si, pour les fonctions ¢ de cette classe, u (e | Q)
est proportionnel a m (v).

Ces définitions s’étendent sans difficulté au cas ol & est une variété
différentiable, sur laquelle il y a une mesure géométrique bien définie. Dans
le cas ou c’est un ensemble parfait discontinu, du moins dans les cas qui
semblent pratiquement les plus importants, il y a souvent une mesure m (v)
qui s’impose naturellement.

Ainsi, considérons I'ensemble &* des nombres réels positifs dont la
représentation décimale ne comprend pas le chiffre 4. A un tel nombre x,
on peut faire correspondre un nombre y dont la représentation dans le
systéme a base 9 se déduit de la représentation décimale de x en diminuant
d’une unité les chiffres supérieurs a 4. Chaque partie e de &* a pour image
I’ensemble e’ des y qui correspondent aux x €e, et c’est la mesure de
Lebesgue de e’ qui deviendra la mesure adoptée sur &*. Cette définition
s’impose, et apparait comme homogene, en ce sens que I’ensemble £* peut
étre divisé en 9" parties égales, chacune intérieure a un intervalle de Jon-
gueur 1/10% et qu’elle leur donne la méme mesure 1/9". On voit d’ailleurs
aisément que, pour ¢ (r) = r* (o = log 9/log 10), ona u [6; N (0,1) | ¢] = 1.

Il serait intéressant d’étudier systématiquement, au point de vue de
leurs @-mesures, d’autres ensembles arithmétiques homogenes tels que les
suivants: ensemble des nombres dans la représentation décimale desquels
un chiffre donné j ne figure qu’un nombre fini de fois, ou bien une infinité
de fois mais avec une fréquence ne tendant pas vers la valeur théorique 1/10.
Ce dernier ensemble étant désigné par e;, la réunion des dix ensembles e;
est ’ensemble des nombres qui ne sont pas normaux (au sens d’Emile Borel,
pour la numération décimale). Il faut remarquer que ces dix ensembles ne
sont pas indépendants, la rareté de certaines décimales devant étre com-
pensée par une fréquence accrue d’une ou plusieurs autres.

Des problémes analogues se posent pour d’autres systémes de numération,
notamment pour la représentation des nombres par des fractions continues.
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Considérons maintenant Pensemble &, des zéros de la fonction aléa-
toire de Wiener X (¢). C’est presque slirement (pr. s.) un ensemble parfait
discontinu, de mesure nulle. Il est facile de définir un paramétre t variant
d’une maniére continue sur &,. Sa variation At entre les instants 7, et #

sera la limite (qui existe pr. s.) du rapport L/\/z (I-0), L étant la longueur
totale des intervalles de longueurs </ ayant chacun pour extrémités deux
points consécutifs de &, N (¢; —1,). D’apres S. J. Taylor et G. J. Wendel?),

pour ¢ (r) = w/" log ] log r
(8) ﬂ[@@om(tmﬁ)lﬁﬂ = cdt.

La fonction Y qui Jui correspond est donc ¢'dt /r/log | log r | (c et ¢’ sont
des constantes finies et >0).

A deux déterminations indépendantes X’ (¢) et X" (¢) de X (¢) corres-
pondent deux ensembles &, et @fo, et deux valeurs A<’ et At de Ar [pour
un méme intervalle (¢,, ¢;)]. Si le principe intuitif énoncé & la fin du n° 5
est exact, la fonction Y associée a Dintersection &, N &q M (f,, 1) est
c'?At' At rllog l logr |, ce qui correspond & une fonction @ (r) devenant
infinie avec 1/r. Cela ne peut signifier qu'une chose: cette intersection est
pr.s. au plus un ensemble infini dénombrable. En fait, elle est pr. s. vide,
c’est-a-dire que la courbe du mouvement brownien plan ne passe pr. s. pas
a I’origine (sauf si on la fait partir de I’origine, et dans ce cas elle n’y repasse
p. s. pas). Ce résultat vérifie notre principe intuitif.

7. Nous allons maintenant appliquer ce principe a [’étude de la
courbe I' du mouvement brownien plan. On déduit aisément de théorémes
connus (théoréeme de ’alternative zéro-un de Kolmogorov; la mesure de
Lebesgue de I' est nulle), que la ¢-mesure de la courbe entiére est pr. s. nulle
ou infinie, suivant la fonction ¢ considérée, et que, pour un arc fini y, si
une fonction ¢ appartient a la classe intermédiaire, p (y [ @) est pr.s. pro-
portionnel a la durée de parcours ¢ de I’arc y. En fait, d’aprés S. J. Taylor ),
en posant w (r) = I log r [ log log [ log ¥ [, et o (r)=r?>w (), on a pr.s.
u(y | @) = ct (0<c< o).

Considérons maintenant une aire S et la partie I'" de I' intérieure a S.
Ce ne sera pas une courbe continue, mais une réunion d’arcs continus ayant
leurs extrémités sur I'. La formule de S. J. Taylor s’applique sans difficulté
a une portion finie y’ de I'’, & condition de remplacer y par un partie finie y’

, ona

1) S. J. TAYLOR et J. G. WENDEL. The exact Hausdorff measure of the zero set of a stable process.
Zeitschrift f. Wahrscheinlichkeitsrechnung, 6 (1966), pp. 170-180.

2) S. J. TavLor. The exact Hausdorff measure of the sample paths for planar Brownian motion.
Proc. Cambridge phil. Soc., 60 (1964), pp. 253-258. Ce travail compléte un résultat partiel de D. Ray,
Trans. Amer. math. Soc., 106 (1963) pp. 436-444.
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de I'” et ¢ par ¢, mesure du temps employé & parcourir y’. La fonction y (r)
qu’on peut associer a I'idée de la probabilité qu’un point choisi dans S
appartienne a y’ est alors

nr?‘ nct

(9) —_— =
m (S) ¢ (r) m (S) w (r)

/

Supposons maintenant I'" divisé en arcs consécutifs 7, correspondant
a une méme durée de parcours t’. Si ¢’ est assez grand, on peut négliger
I'influence du fait que deux arcs consécutifs aient une extrémité commune
(rien n’empécherait d’ailleurs de ne considérer que les arcs y,,), et considérer
la probabilit¢ comme uniformément répartie dans S. Ces arcs sont donc
indépendants, au moins asymptotiquement, et il y a lieu de penser que la
formule (7) s’applique. Pour l’intersection de n arcs, on aurait alors une
probabilité liée a une fonction ¥ (r) de Ja forme c,/w" (r). On voit alors que,
si une fonction @ (r) est telle que le quotient ¥ (r) = r?/® (r) tende vers zéro
avec r plus rapidement que n’importe quelle puissance de 1/ | log r |, c’est-
a-dire si log [ (r)/r*)/log | log r| augmente indéfiniment avec 1/r, la
@-mesure de intersection de n arcs choisis parmi les y, est pr. s. infinie.
Donc, pr. s., cette intersection est un ensemble infini non dénombrable,
contenu dans I’ensemble &, des points multiples de I d’ordre > n. Donc,
st le principe intuitif énoncé a la fin du n° 5 est exact, quelque grand que
soit n, cet ensemble est pr.s. partout dense dans le plan.

Pour montrer ’extraordinaire densité de cet ensemble &, (qui est un
nuage), remarquons que le choix de n des arcs y, peut étre effectué d’une
infinité de maniéres, le nombre des choix possibles ayant la puissance du
continu; cet ensemble contient donc la réunion d’un ensemble de puis-
sance C d’ensembles partiels non dénombrables, et « presque disjoints » en
ce sens qu’un point choisi sur 'un d’eux n’appartient pr.s. a aucun autre.
Or nous n’avons obtenu ainsi qu’une partie de &,. Il peut en effet arriver
que les n’' (n’ > n) valeurs du temps qui correspondent a un pointde &, N S
correspondent & un méme arc y, ou & moins de z arcs distincts. 11 faut donc
tenir compte des points multiples de chacun des arcs y, considéré indépen-
damment du reste de la courbe I

Pour montrer que ces points multiples existent sur chaque arc de I', et
méme forment sur n’importe quel arc parcouru en un temps donné <
(méme trés petit) un ensemble ayant la puissance du continu, il n’y a qu’a
remarquer que la probabilité de cette circonstance ne peut €tre que z€ro
ou un (cela se déduit du théoréme de Kolmogorov) et est indépendante de t
comme de ’origine de I’arc considéré. Or, si cet arc contient y, et si T aug-
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mente indéfiniment, la probabilité qu’il contienne » arcs y, distincts, et que
par suite la circonstance considérée soit réalisée, tend vers un. Elle n’est donc
pas nulle, et par suite est toujours égale & un, c’est-a-dire que n’importe
quel petit arc y de I' contient pr. s. un ensemble de points multiples (de
cet arc y lui-méme) d’ordre au moins égal a n. Or cet ensemble n’est évidem-
ment qu’une partie négligeable de I’ensemble des points multiples d’ordres
¢levés de la courbe I' situé sur l'arc y.

8. On sait que, non seulement cette conséquence de notre principe
intuitif est exacte, mais que tout arc y de I' contient pr. s. des points mul-
tiples d’ordre infini, et méme d’ordre C. C’est un théoréme de Dvoretsky,
Erdos et Kakutani (D.E.K.) ) qui m’avait d’abord beaucoup surpris. Sa
démonstration étant assez délicate, j’ai cherché a rendre ce théoréme plus
compréhensible par des considérations heuristiques. J’ar déja montré
ailleurs 2) que les extraordinaires détours de la courbe I', qui ne I’empéchent
pourtant pas d’étre un ensemble de mesure nulle, semblent rendre inévitable
I’existence de ces points multiples d’ordre C. Les considérations qui pré-
cedent, en introduisant les ¢-mesures, sont peut-étre un peu plus précises.
Sans donner exactement la fonction ¢ (ou la coupure dans une échelle %)
qu'on peut associer a I’ensemble des points multiples d’ordre > n d’un
arc y de I', elles conduisent (aussi par une méthode heuristique) au résultat
analogue pour un sous-ensemble de cet ensemble et par conséquent & une
borne inférieure de la fonction ¥, donc & une borne supérieure de la fonc-
tion ¢ (ou de la coupure) associée a cet ensemble Iui-méme. Cet ensemble
est donc bien infini non dénombrable.

Sans insister sur le passage des points multiples d’ordre n a ceux
d’ordre C, je pense avoir montré d’une nouvelle maniére que le théoréme
de D.E.K. ne doit plus trop nous surprendre 3). En outre, la définition de
I'indépendance indiquée au n° 5 et le principe intuitif énoncé ensuite
peuvent conduire & d’autres applications, et peut-&tre & une démonstration
de la validité de ce principe général.

38, Av. Th. Gautier ( Regu le 18 Avril 1968)
Paris 16¢.

1) A. DVORETSKY, P. ERDOs et S. KAKUTANI. Points of multiplicity C of plane Brownian paths. Bull.
of the Research Council, Israel, 7F (1958), pp. 175-180.
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en admettant que Pr ‘£, 1|6, ne dépend pas de n. Mais cette hypothése semble plus hardie que celles
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