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UNE HIÉRARCHIE DES PROBABILITÉS
PLUS OU MOINS NULLES

APPLICATION A CERTAINS NUAGES DE POINTS

M. Paul Lévy

A la mémoire de J. Karamata

1. De nombreux auteurs, notamment Hausdorff, Besicovitch et Cara-

théodory, d'une part, Emile Borel et Fréchet, d'autre part, se sont intéressés

aux ensembles de mesure de Lebesgue nulle, avec l'idée d'établir une
hiérarchie entre eux. Un probabiliste peut avoir une idée analogue et considérer
des probabilités « plus ou moins nulles ». Ainsi, un point aléatoire étant
uniformément réparti dans une sphère, on peut être tenté de dire que, la

probabilité qu'il soit dans un plan diamétral étant a 0, il a une probabilité

a2, « encore plus nulle », d'être sur un diamètre, intersection de deux

plans.

L'objet du présent travail est d'esquisser une théorie de ce genre, dans

laquelle les probabilités plus ou moins nulles seront représentées par des

fonctions \j/(r) tendant plus ou moins rapidement vers zéro avec la variable r.
Deux événements seront indépendants si la probabilité que tous les deux
soient réalisés est le produit de leurs probabilités.

Cette extension du calcul des probabilités, qui sera précédée par quelques

remarques simples (nos 2 à 4), semble pouvoir être utile dans l'étude de

certains nuages de points, tels que ceux des points multiples de la courbe
du mouvement brownien plan. Les problèmes qui se posent ainsi sont
difficiles; mais l'idée semble assez importante pour que, à défaut de résultats
précis, nous présentions un travail qui contient surtout des énoncés de
problèmes, quelques conjectures, et une explication intuitive d'un théorème
de Dvoretsky, Erdös et Kakutani.

2. La notion qui nous servira de base est celle de mesure au sens de
Hausdorff-Besicovitch. Rappelons la définition de ce que nous appelons
par abréviation ^-mesure d'un ensemble S et désignerons par pdß\(p); c'est
en réalité une mesure extérieure. Nous plaçant dans l'espace euclidien à N
dimensions, EN, nous ne considérerons comme acceptables que des fonc-
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tions (p (ir), s'annulant avec r, chacune étant définie, continue et croissante

au moins dans un petit intervalle (0, p) (p >0), où (p (r)/rN est, au contraire,
soit constant, soit constamment décroissant. Ainsi la fonction ra est acceptable

si 0 < a < N.
Soit maintenant un ensemble S a EN. Supposons-le recouvert par un

ensemble fini ou dénombrable de sphères de rayons rv tous < r, et désignons

par s (r) la plus grande borne inférieure de £ cp(rv) pour tous les recouvrements

vérifiant cette condition. C'est évidemment une fonction non croissante

de r, de sorte que sa limite s (0) est bien définie. C'est cette limite qui
est la (^-mesure m{$ \cp) de S. C'est un nombre positif, qui peut être nul
ou infini.

Il est commode (et c'est ce que nous ferons), de ne considérer en même

temps que des fonctions appartenant à une même échelle de croissance,
c'est-à-dire à un ensemble 3F de fonctions tel que, si cp1e3F et cp2 e 3F,

9i (r) ~~ <P2 (r) a un signe constant au moins dans un petit intervalle (0, p).
Nous supposerons de plus que cp e entraîne ccp e 3F (Vc>0). Alors
<Pi (r)/(p2 00 a toujours, pour r 0, une valeur limite c, qui peut être nulle

ou infinie.
Il est commode aussi, mais non essentiel, de ne considérer que des

fonctions d'allures régulières. Pour fixer les idées, on peut supposer que 3F

contienne la fonction cp (r) r, que cp e3F entraîne ccpae3F (Vcet a>0) et

log cp e 3F, et que cp e \j/ e 3F entraînent cpij/ e 3F. Naturellement, dans

une échelle nous n'utiliserons que la section qui contient les fonctions
acceptables.

Cette section peut être divisée en classes d'équivalence. Nous dirons que
cp1 et cp2 sont strictement équivalents si la limite c de leur rapport (r->0)
est un; alors p (S | pq) ** p, (S | cp2). Ces fonctions sont équivalentes au sens

large si cette limite est finie et >0; alors p (ê | cpx) et p($\ cp2) sont en

même temps nuls, ou en même temps infinis, ou en même temps finis et >0.
Ces classes jouent un rôle essentiel si on cherche à associer à un ensemble

donné ê c= EN une fonction cp e 3F telle que p {ß | cp) 1 [ou 0 < p (ê | cp)<

oo]. Pour chacun de ces deux problèmes, c'est une classe d'équivalence qui
est en réalité associée à S.

3. Rappelons à ce sujet quelques résultats connus x). D'abord, à toute
fonction acceptable cp on peut de bien des manières associer des ensembles S

c= Ejy dont la ç?-mesure soit un. Si rN/cp(r) s'annule avec r, on peut même en

i) Paul Lévy, C. R. Acacl. Sc., 261 (1965), pp. 295-298 et erratum p. 2577; 263 (1960), pp. 540-542.
Pour le cas N 1, le premier résultat cité avait été obtenu par A. Dvoretsky dès 1948.
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trouver dans n'importe quelle petite sphère. La réciproque n'est pas vraie.

Etant donnée, en effet, une fonction acceptable nous pouvons lui
associer une suite infinie d'ensembles ên tels que ii(ßn | <A) n- Soit S

leur réunion. Si une fonction cp e 3F est o (ij/) (r)->0, on a ji (ßn | xj/) 0

et par suite p {S | cp) « 0; dans le cas contraire, on a p (ß \ cp) > n | <p)=

n, quel que soit n, et par suite \i (ß | cp) oo. On doit donc associer

à ê, non une classe de fonctions cp équivalentes, mais une coupure dans #*,

{i(S \(p) étant nul ou infini suivant que (p est au-dessous ou au-dessus de

cette coupure.
Cette construction d'un exemple d'ensemble ê auquel ne s'associe

aucune fonction (p e est due à M. D. G. Larman. On peut obtenir le

même résultat sans se restreindre aux fonctions d'une famille #*. Divisons
à cet effet EN en une infinité de pavés égaux Vn, et, S'1 étant un ensemble

intérieur à Vl9 désignons par Sn un ensemble égal à et intérieur à Vn9

et par ê la réunion de tous les $n. La fonction cp étant maintenant bien

définie pour r assez petit, mais à cela près absolument quelconque, il est

bien évident que pi{ê\(p) est nul si fi (é'1 | cp) 0 et infini dans tous les

autres cas.

4. La (^-mesure étant une mesure extérieure, on a toujours, pour la
réunion S d'un nombre fini ou d'une infinité dénombrable d'ensembles ên9

(1) n(S \cp) <In(én\(p),

cette inégalité devenant une égalité dans le cas des ensembles séparés, c'est-
à-dire que les intersections deux à deux des fermetures ên sont vides ou du
moins de cp-mesures nulles. Ces faits évidents ont été utilisés au n° 3 ci-dessus.

Dans le cas où cp (r) cN rN (cN étant le volume de la sphère de rayon
un), la (^-mesure se réduit à la mesure extérieure de Lebesgue. On sait que
ce n'est pas une vraie mesure, c'est-à-dire qu'elle n'est pas une fonction additive

d'ensemble. Elle devient additive, et même complètement additive, si

on ne considère que les fonctions mesurables (au sens de Lebesgue). Or les

fonctions non mesurables sont en un certain sens les plus nombreuses.

Ainsi, si on choisit au hasard un ensemble ê en faisant pour chaque point x
un tirage au sort à pile ou face indépendant des autres et en prenant pour S
l'ensemble des x pour lesquels on a obtenu pile, l'ensemble obtenu n'a
aucune chance d'être mesurable. Pourtant, on ne peut pas définir un ensemble

non mesurable particulier sans utiliser l'axiome du choix. Comme le disait
Emile Borel, si deux savants parlent d'un ensemble non mesurable, ils ne
peuvent pas être sûrs de penser au même ensemble. En d'autres termes, on

L'Enseignement mathém., t. XV. 15
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ne peut pas donner d'exemple concret d'un ensemble qui ne soit pas
mesurable.

Dans le cas des fonctions cp pour lesquelles rN/cp (r) tend vers zéro avec r,
la théorie de Lebesgue ne s'étend pas sans changement, parce qu'à l'intérieur

d'une sphère un ensemble et son complément ne peuvent pas avoir
en même temps une (^-mesure finie. Carathéorody a tourné la difficulté en
se restreignant aux sous-ensembles d'un ensemble donné de ^-mesure finie.
Dans ces conditions, la théorie de Lebesgue se généralise sans difficulté.
Mais les remarques du précédent alinéa conduisent à se demander si on ne

peut pas définir autrement une classe ^ très vaste d'ensembles qui seraient

réellement cp-mesurables. Nous entendons par que, dans cette classe, \cp)

serait une fonction d'ensemble complètement additive, c'est-à-dire que,
si S est la réunion d'un nombre fini ou d'une infinité dénombrable
d'ensembles cpn de cette classe, et si ê 'n est la partie de Sn qui n'appartient à

aucun des d'indices v<n, on aurait toujours

(2) pi(S\cp) <?>).

En d'autres termes, pour des ensembles disjoints, la mesure serait complètement

additive. Pour deux ensembles, on aurait

(3) | cp)niSi | cp)+ n(|- | cp),

formule qui se généralise par une formule connue de Poincaré pour le cas

de n ensembles. La formule (2) devient évidente si un des pi (ßn | cp) est

infini.
La question qui se pose, et que je n'ai pas résolue, est la suivante: Les

ensembles qu'on peut nommer individuellement, sans utiliser l'axiome du

choix, sont-ils toujours (p-mesurables, quelle que soit la fonction cp C'est,

je crois, un problème difficile, mais qui mérite qu'on y réfléchisse. Si la

réponse est négative, peut-on du moins définir des opérations dont on soit
sûr qu'elles n'introduisent que des ensembles cp-mesurables En tout cas,
dans la suite, nous ferons l'hypothèse suivante: il ne peut s'agir que
d'ensembles d'une famille borélienne à l'intérieur de laquelle, quelle que soit la

fonction cp, la cp-mesure soit complètement additive, c'est-à-dire que la
formule (2) s'applique toujours, que les termes du second membre soient

nuls ou non, et finis ou infinis. La <p-mesure est alors une vraie mesure

et on peut lui donner une interprétation probabiliste. C'est ce que nous
allons faire.

5. Soit donc un ensemble $*, réunion de n ensembles séparés égaux

(v 1,2, ...,«); si ces ensembles sont associés à une fonction cp telle
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que leur cp-mesure soit un, celle de S* est n, et c'est cp* (p/n qui doit être

associé à S* pour que l'on ait u (<f* | (p*) «= 1. Si on choisit au hasard un

point dans <?*, les différents Sy étant également probables, c'est 1/« cp*/cp

qui mesure leur probabilité.
Pour établir une hiérarchie des probabilités nulles, nous n'avons qu'à

étendre cette remarque au cas où un ensemble ê c= S* n'est qu'une partie

négligeable de <?*, de sorte que \j/ (r) (p* (r)/<p (r) tend vers zéro avec r.

C'est alors ce quotient, et non cp, qu'il faut considérer, pour dire que sa

décroissance plus ou moins rapide peut mesurer en quelque sorte la
probabilité plus ou moins nulle qu'un point de appartienne à S.

Le cas sans doute le plus important est celui où S* est la sphère de

rayon un; (p* (r) est alors le volume cN r" de la sphère de rayon r.

De toute façon, si ê a S*, si on définit la probabilité (éventuellement

nulle) qu'un point de S' appartienne à ê par la formule

(4) Pr(ß S") - {cp'jcp},
cpf étant la fonction associée à S", et le signe { •} indiquant que c'est la rapidité

de la décroissance de cp'/cp pour r très petit qui nous intéresse, on a

(5) Pr {S | #*) Pr (S | i') Pr (rf | S*)

ce qui généralise une des formules fondamentales du calcul des probabilités.
Il est alors naturel de dire que ê et ê' sont indépendants dans â* si on a

(6) Pr (S | Pr (S \ S*)

et par suite, en sous-entendant qu'il s'agit d'un point choisi dans S*,

(7) Pr né") Pré -Prê'
c'est-à-dire que la probabilité de la réalisation simultanée de deux événements

indépendants est donnée par la même formule que dans le calcul
des probabilités classique.

L'intérêt de cette définition est qu'elle suggère l'idée que, si ê et S'
dépendent de deux séries de tirages au sort indépendantes l'une de l'autre,
on peut appliquer la formule (7)1).

6. Nous allons voir ce que peut donner l'application de cette idée à

l'étude des nuages homogènes.

Nous appelons nuage un ensemble de points de mesure de Lebesgue nulle,
ne contenant aucun continu, et tel que son intersection avec n'importe
quel voisinage de n'importe lequel de ses points ait la puissance du continu.

0 Remarquons toutefois que, s'il s'agit d'un tirage au sort dépendant d'une loi continue (c'est-à-dire
qu'aucun n'a une probabilité positive) son résultat est pr. s. un objet qu'on ne peut pas nommer individuellement.

Nous faisons donc implicitement une hypothèse un peu plus hardie que celle énoncée au n° 4.
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Pour définir l'homogénéité d'un nuage <f, il faut supposer une mesure
définie sur sa fermeture g. Considérons d'abord le cas où $ est un volume
VœEn (pouvant être une réunion de parties séparées). Désignons par e

l'intersection de S avec un volume vcV, fini et de mesure m(v)>0, et
associons à e une division de l'échelle en trois classes, une classe
inférieure pour laquelle ji (e | cp) 0, une classe supérieure pour laquelle
H (e | cp) co, et une classe intermédiaire. Nous dirons que le nuage e est

homogène si cette division est indépendante de v.

Dans le cas où la classe intermédiaire existe, nous dirons qu'un nuage
est tout à fait homogène si, pour les fonctions cp de cette classe, fi(e\cp)
est proportionnel à m (v).

Ces définitions s'étendent sans difficulté au cas où $ est une variété
différend able, sur laquelle il y a une mesure géométrique bien définie. Dans
le cas où c'est un ensemble parfait discontinu, du moins dans les cas qui
semblent pratiquement les plus importants, il y a souvent une mesure m (v)

qui s'impose naturellement.

Ainsi, considérons l'ensemble des nombres réels positifs dont la

représentation décimale ne comprend pas le chiffre 4. A un tel nombre x,
on peut faire correspondre un nombre y dont la représentation dans le

système à base 9 se déduit de la représentation décimale de x en diminuant
d'une unité les chiffres supérieurs à 4. Chaque partie e de a pour image
l'ensemble e' des y qui correspondent aux x e e, et c'est la mesure de

Lebesgue de e' qui deviendra la mesure adoptée sur Cette définition
s'impose, et apparaît comme homogène, en ce sens que l'ensemble <f* peut
être divisé en 9" parties égales, chacune intérieure à un intervalle de

longueur 1/10", et qu'elle leur donne la même mesure 1/9". On voit d'ailleurs
aisément que, pour cp (r) ra (a log 9/log 10), on a ji \S\ n (0,1) | cp] 1.

Il serait intéressant d'étudier systématiquement, au point de vue de

leurs (^-mesures, d'autres ensembles arithmétiques homogènes tels que les

suivants: ensemble des nombres dans la représentation décimale desquels

un chiffre donné j ne figure qu'un nombre fini de fois, ou bien une infinité
de fois mais avec une fréquence ne tendant pas vers la valeur théorique 1/10.

Ce dernier ensemble étant désigné par ep la réunion des dix ensembles ej
est l'ensemble des nombres qui ne sont pas normaux (au sens d'Emile Borel,

pour la numération décimale). Il faut remarquer que ces dix ensembles ne

sont pas indépendants, la rareté de certaines décimales devant être

compensée par une fréquence accrue d'une ou plusieurs autres.

Des problèmes analogues se posent pour d'autres systèmes de numération,
notamment pour la représentation des nombres par des fractions continues.
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Considérons maintenant l'ensemble S0 des zéros de la fonction aléatoire

de Wiener X (t). C'est presque sûrement (pr. s.) un ensemble parfait

discontinu, de mesure nulle. Il est facile de définir un paramètre x variant

d'une manière continue sur S0. Sa variation Ax entre les instants t0 et t1

sera la limite (qui existe pr. s.) du rapport Lj^Je (/->0), L étant la longueur

totale des intervalles de longueurs </ ayant chacun pour extrémités deux

points consécutifs de S0 n (tl — t0). D'après S. J. Taylor et G. J. Wendel1),

pour cp (r) ^r log | log r |, on a

(8) ii\ß0 n(t0?C) \<p] •

La fonction \J/ qui lui correspond est donc c'Ax sjrjlog j log r | (c et c sont

des constantes finies et >0).
A deux déterminations indépendantes X' (t) et X" (t) de X (t)

correspondent deux ensembles ê'Q et £'o, et deux valeurs Ax' et Ax" de Ar [pour

un même intervalle (t0> zy)]. Si le principe intuitif énoncé à la fin du n° 5

est exact, la fonction \j/ associée à l'intersection êQ n S0 n (t0} xj est

c'2Ax Ax" r/log | log r |, ce qui correspond à une fonction <P (r) devenant

infinie avec 1 jr. Cela ne peut signifier qu'une chose: cette intersection est

pr. s. au plus un ensemble infini dénombrable. En fait, elle est pr. s. vide,
c'est-à-dire que la courbe du mouvement brownien plan ne passe pr. s. pas
à l'origine (sauf si on la fait partir de l'origine, et dans ce cas elle n'y repasse

p. s. pas). Ce résultat vérifie notre principe intuitif.
7. Nous allons maintenant appliquer ce principe à l'étude de la

courbe T du mouvement brownien plan. On déduit aisément de théorèmes

connus (théorème de l'alternative zéro-un de Kolmogorov; la mesure de

Lebesgue de T est nulle), que la cp-mesure de la courbe entière est pr. s. nulle
ou infinie, suivant la fonction cp considérée, et que, pour un arc fini y, si

une fonction cp appartient à la classe intermédiaire, fi(y \ cp) est pr. s.

proportionnel à la durée de parcours t de l'arc y. En fait, d'après S. J. Taylor 2),

en posant co (r) | log r j log log | log r |, et cp (r) r2 œ (r), on a pr. s.

fi (y | cp) et (0<c< oo).

Considérons maintenant une aire S et la partie f de T intérieure à S.

Ce ne sera pas une courbe continue, mais une réunion d'arcs continus ayant
leurs extrémités sur T. La formule de S. J. Taylor s'applique sans difficulté
à une portion finie y' de T', à condition de remplacer y par un partie finie y'

x) S. J. Taylor et J. G. Wendel. The exact Hausdorff measure of the zero set of a stable process.
Zeitschrift f. Wahrscheinlichkeitsrechnung, 6 (1966), pp. 170-180.

2) S. J. Taylor. The exact Hausdorff measure of the sample paths for planar Brownian motion.
Proc. Cambridge phil. Soc., 60 (1964), pp. 253-258. Ce travail complète un résultat partiel de D. Ray,
Trans. Amer. math. Soc., 106 (1963) pp. 436-444.
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de r et t par t\ mesure du temps employé à parcourir y'. La fonction \j/ (r)
qu'on peut associer à l'idée de la probabilité qu'un point choisi dans S

appartienne à y' est alors

(9) ~m (S) (p (r) m (S) œ (r)

Supposons maintenant r' divisé en arcs consécutifs y'n correspondant
à une même durée de parcours t'. Si t' est assez grand, on peut négliger
l'influence du fait que deux arcs consécutifs aient une extrémité commune
(rien n'empêcherait d'ailleurs de ne considérer que les arcs y2n), et considérer
la probabilité comme uniformément répartie dans S. Ces arcs sont donc
indépendants, au moins asymptotiquement, et il y a lieu de penser que la
formule (7) s'applique. Pour l'intersection de n arcs, on aurait alors une
probabilité liée à une fonction ijf (r) de la forme cjof (r). On voit alors que,
si une fonction (r) est telle que le quotient i]/ (r) r2/<P (r) tende vers zéro

avec r plus rapidement que n'importe quelle puissance de 1/| log r |, c'est-
à-dire si log [0 (r)/r2]/log \ log r \ augmente indéfiniment avec 1/r, la
^-mesure de l'intersection de n arcs choisis parmi les y'v est pr. s. infinie.
Donc, pr. s., cette intersection est un ensemble infini non dénombrable,
contenu dans l'ensemble ên des points multiples de T d'ordre > n. Donc,
si le principe intuitif énoncé à la fin du n° 5 est exact, quelque grand que
soit n, cet ensemble est pr. s. partout dense dans le plan.

Pour montrer l'extraordinaire densité de cet ensemble Sn (qui est un
nuage), remarquons que le choix de n des arcs y'v peut être effectué d'une
infinité de manières, le nombre des choix possibles ayant la puissance du

continu; cet ensemble contient donc la réunion d'un ensemble de

puissance C d'ensembles partiels non dénombrables, et « presque disjoints » en

ce sens qu'un point choisi sur l'un d'eux n'appartient pr. s. à aucun autre.
Or nous n'avons obtenu ainsi qu'une partie de Sn. Il peut en effet arriver

que les n' (n' > ri) valeurs du temps qui correspondent à un point de ên n S

correspondent à un même arc y'v ou à moins de n arcs distincts. Il faut donc
tenir compte des points multiples de chacun des arcs y'v considéré
indépendamment du reste de la courbe T.

Pour montrer que ces points multiples existent sur chaque arc de T, et

même forment sur n'importe quel arc parcouru en un temps donné t
(même très petit) un ensemble ayant la puissance du continu, il n'y a qu'à

remarquer que la probabilité de cette circonstance ne peut être que zéro

ou un (cela se déduit du théorème de Kolmogorov) et est indépendante de t
comme de l'origine de l'arc considéré. Or, si cet arc contient y[ et si t aug-
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mente indéfiniment, la probabilité qu'il contienne n arcs yv distincts, et que

par suite la circonstance considérée soit réalisée, tend vers un. Elle n'est donc

pas nulle, et par suite est toujours égale à un, c'est-à-dire que n'importe
quel petit arc y de E contient pr. s. un ensemble de points multiples (de

cet arc y lui-même) d'ordre au moins égal à n. Or cet ensemble n'est évidemment

qu'une partie négligeable de l'ensemble des points multiples d'ordres
élevés de la courbe E situé sur l'arc y.

8. On sait que, non seulement cette conséquence de notre principe
intuitif est exacte, mais que tout arc y de JH contient pr. s. des points
multiples d'ordre infini, et même d'ordre C. C'est un théorème de Dvoretsky,
Erdös et Kakutani (D.E.K.)x) qui m'avait d'abord beaucoup surpris. Sa

démonstration étant assez délicate, j'ai cherché à rendre ce théorème plus
compréhensible par des considérations heuristiques. J'ai déjà montré
ailleurs 2) que les extraordinaires détours de la courbe E, qui ne l'empêchent
pourtant pas d'être un ensemble de mesure nulle, semblent rendre inévitable
l'existence de ces points multiples d'ordre C. Les considérations qui
précèdent, en introduisant les (^-mesures, sont peut-être un peu plus précises.
Sans donner exactement la fonction cp (ou la coupure dans une échelle 6F)

qu'on peut associer à l'ensemble des points multiples d'ordre > n d'un
arc y de E, elles conduisent (aussi par une méthode heuristique) au résultat
analogue pour un sous-ensemble de cet ensemble et par conséquent à une
borne inférieuie de la fonction xjj, donc à une borne supérieure de la fonction

cp (ou de la coupure) associée à cet ensemble lui-même. Cet ensemble
est donc bien infini non dénombrable.

Sans insister sur le passage des points multiples d'ordre n à ceux
d'ordre C, je pense avoir montré d'une nouvelle manière que le théorème
de D.E.K, ne doit plus trop nous surprendre 3). En outre, la définition de

l'indépendance indiquée au n° 5 et le principe intuitif énoncé ensuite
peuvent conduire à d'autres applications, et peut-être à une démonstration
de la validité de ce principe général.

38, Av. Th. Gautier (Reçu le 18 Avril 1968)
Paris 16e.
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3) Peut-être peut-on avoir un autre raisonnement intuitif conduisant plus directement à ce théorème
en admettant que Pr \é>n} ne dépend pas de n. Mais cette hypothèse semble plus hardie que celles
faites dans le texte. Je signale enfin que les raisonnements basés sur la formule (7) permettent aussi de prévoirl'existence des points doubles et la non existence des points triples pour le mouvement brownien à trois
dimensions, et la non-existence des points doubles quand il y a plus de trois dimensions. C'est par erreur
que, dans Processus stochastiques et mouvement brownien (Gauthier-Villars, 2e éd., 1965, p. 327, 1. 7), j'aiparlé de l'existence des points triples pour le cas de trois dimensions, alors que c'est le contraire qui avait
été établi par les auteurs déjà cités et S. J. Taylor.
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