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ON SOME GENERALISATIONS OF ABEL SUMMABILITY

B. KUTTNER

To the memory of J. Karamata

1. With the usual terminology, a sequence {s,} is described as Abel
summable to s if

(1—-x) ) s,x"
n=0

converges for 0<x< 1, and tends to s as x—1—. For our present purposes,
it is convenient to put x = t/(14-¢); thus the definition takes the form that

1 t \"
¢(t)———go (1+t> (1)

converges for >0, and tends to s as z—00. A generalisation which has been
considered by Kogbetliantz [3] and Lord [4] is to replace (1) by

1 * t \"
) = — at
¢ (1) 1+t,,_os <1+t> ’ (2

where «> —1 and where {s;‘,‘} is the (C, o) mean of {s,}; that is to say

n . + _1
fm s B ()
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Here we write, as usual,

<m +[3> =(m+p(m+p-1)...(1+p).

m m!

If (2) converges for all 1>0, and if ¢ (a; #)—s as t— o0, we say that {s.} is
summable (4, a) to s. It is easily seen that if, for a given a> —1, (2) converges
for all £>0 then the same thing holds for any other a> —1. It is known
that, if this holds, then, for f>a> —1,
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As is known, it follows easily from (3) that, for «> — 1, summability (4, o)
increases in strength with increasing «; that is to say, if f>o> —1 and if
{s,} is summable (4, «) to s, then it is also summable (4, ) to s.

A different generalisation has been introduced by Borwein [1]. For

A>—1, let
1 X n+A t\"
00 - 50 ) () o

If (4) converges for all />0 and if ¢, (t)—>s as t—oo, we say that {s,} is
summable A4, to s. It is again clear that if, for a given A> —1, (4) converges
for all #>0, then the same thing holds for any other 4> —1. Borwein has
shown that, if this holds, then, for A>u> —1,

I'(A+1)
F'(A—p) I'(p+1)

¢, (1) = t~* J (t—w)* " *tut b, (u) du . (5)

Using (5), Borwein proved that, for A> —1, summability A, increases in
strength with decreasing A.

Let us now combine these two ideas. For a> —1, A> —1, let

1 AT VAN A
¢, (0 8) = mn§o< . >Sn <1_—ﬁ> ~ (6)

If (6) converges for all >0, and if ¢, («; t)—s as t— o0, we say that {s,} is
summable (4, o) to s. The object of this paper is to compare the strengths
of (A4, «) for different values of o, .. We will show that (assuming that
o> —1, A> —1) the strength of (4,, ) depends only on the value of a—4;
further, the method increases in strength with increasing o«—A. In other
words, we have the following result.

THEOREM. Suppose that o> —1,A>—1, > =1, u> -1, f—pu > a—4A
If {s,} is summable (A, ) to s, then it is summable (A, y) to s.

We remark that this theorem clearly includes the result that if f—p =
= a— A then summabilities (4;, «), (4,, f) are equivalent.

2. In order to prove the theorem, we make use of the idea of the Haus-
dorff transform of a function introduced by Rogosinski [5]. Let y (¢) be a
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given function of bounded variation in [0, 1]. Given any function ¢ (1)

which is measurable and bounded in any finite interval, let
1

W) = f b (tu) dy (u) = fcp(u) dy @ (7)

0
If  (t)—s as t— o0, we say that the function ¢ (¢) is summable (H, y) to s.
There is clearly no loss of generality in taking y (0) = 0; assuming this,
(H ,y) is regular (i.e., ¢ (t)—s as t— oo implies that ¥ (f)—s as t—o0) if and
only if * ¥ (0+) =0, x (1) = 1.
Associated with any Hausdorfl transformation (H, y) there is a Mellin
transform 7 (z), defined for Rz>0 by

1

T(z) = f 2 dy (f) . (8)

0

Conversely, given any function T (z) defined for Rz>0, we follow Rogo-

sinski in describing it as a Mellin transform if it can be expressed in the
form (8).

Lemma 1. Let (H, x,), (H, x,) be two regular Hausdorff transformations,
the corresponding Mellin transforms being T, (z), T, (z). Soppose that
T, (2)]T, (z) is also a Mellin transform. Then if ¢ (t) is summable (H, y,)
to s, it is also summable (H, y,) to s. |

The result that, under the hypotheses of the lemma, ¢ (¢) is summable
(H, y,) to some limit is given by [5], Theorem 2. The result that this limit
is s 1s not included in the explicit statement of that theorem; however, in
view of the conditions for regularity already stated, it follows from the
proof of that theorem with the aid of equations (4), (5) of § 1.6 of [3].

LEmMA 2. Let
ro+nyrp+) rz+o+1) r'(z+u+1)
T(o, A, B, 15 z) = - .
F'a+) I'(p+H) '(z+A2+D) T'(z+p+1)
If o> —1, A>—1, f>—1, u>—1, f—pu > a—4, then T (o, A, B, u; z) (as
a function of z) is a Mellin transform.
Write

I'z+y+1)
FG+DT(z+1D)(z+1)"

T(y;z) =

1) [5], Theorem 1. It is to be noted that Rogosinski uses the term “ regular ” in a wider sense.,
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It is known ! that, if y> —1, then 7 (y; z) and its reciprocal are both Mellin
transforms. It is also known that, for 6 >0, (z-+1)7? is a Mellin transform.

But

Ty 4, By iy 2) = B D TUED) | pavnmimp

t(4;2) 7(B; 2)

Since the product of a finite number of Mellin transforms is a Mellin trans-
form, the lemma follows.

3. It is clear that if, for a given a> —1, A> —1, (6) converges for all
t>0, then the same will hold for any other > —1, A> — 1. Throughout the
rest of the paper, this will be assumed to be the case.

LemMmA 3. If a>—1, A>—1, then, for t>0, £ {t*** ¢, (a+1;1)} =
= (a+1) 1% ¢, (25 1)

We have (the formal manipulations being justified by absolute conver-
gence),

tn+a+1

d . ... d 2 (n+i\ ,,
—{ 1;)} = — 2+l =
AL ai %, ( ) T

n

el tn+a n+l ] et
=n§o(1+z)"““< n )[("MH)S"“ "S+]'

Since the expression in square brackets is equal to (x-+1) s;, the lemma

follows.
As an immediate corollary, we have

o n+Ai . t"+a tn+a+1
= ng()( )Sn+1{(n+oc+1) (1+t)"+}'+1 - (n+/1+1) (1-—|-t)"+;*+2} =

br(a+150) = (@+1)t7*! ftu“%(ot;u)du- 9
0

It may be remarked that (9) is a special case of the more general result that,
for f>a>—1, A>—1,

r¢g+1
I(x+1)T (B

¢, (Bt = —a) t=? J (t“u)ﬂ—a—l u* @, (a;u)du. (10)

1) This is given, for example, by the proof of [2], Theorem 211.
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This reduces to (3) when A = 0. However, (10) will not be needed for the
proof of the main theorem, so I omit its proof.

4. We now come to the proof of the theorem. In view of the definition
of ¢, (a; 1), we see on applying (5) with s, replaced by s, that, for a>—1,
A>u>—1,

ri+1)
riA-pre+1)

¢, (1) = y= J (t—w) P ur¢, (s u)du. (11)

Consider in particular the special case in which 4 = a. It is well known that

bo (s u) = ¢o(0su) = ¢ (u);
thus, changing the notation by writing A in place of p, we find that, for
a>A>—1

b (1) = — D j t—uy=ut gy du.  (12)

T(a—NT(A+1)

Thus, for a>A> —1, ¢, («; ¢) is obtained from ¢ (z) by the (H, x) trans-
formation with

2@ = gxl (u)du ;

I'(e+1)

ra-nrazp 4w

W) = yi(wu) =

The corresponding Mellin transform is

F+1) I(z+A+1)

T@ = L& = T N TaratD)

(13)

Thus, with the notation of Lemma 2,

T, (B; 2)
T,(a; 2)

= T(a, A, B, 1; 2) .

By Lemma 2, this is a Mellin transform whenever the appropriate inequal-
ities are satisfied; and the case of the theorem in which a> A therefore
follows at once from Lemma 1.

If «<<A, however, (12) is no longer valid, and this case of the theorem
therefore requires further consideration. We suppose from now on that




214 —

the inequalities imposed in the theorem are satisfied. Thus, by Lemma 2,
T (o, A, B, u; z) is a Mellin transform, so that we can write

1
T(a, 4, p, ;5 2) = § tdy (a4, B, 15 1) (14)

say. If, further, a«> A, the proof of Lemma 1 then shows that

¢, (Bs1) = OI b, (o5 tu) dy (o, A, B, psu) . (15)

We will show that, if for given o, 4, B, u, (15) holds with «, f replaced by
o+1, 41, then it holds as it stands. By successive applications of this
result, it will then follow that if (15) holds with «, f replaced by a+r, f+r
(r a positive integer), then it holds as it stands; and, since we can choose
o4r> A, this will give the theorem. |

In order to prove the result stated, we write, for the sake of brevity,
y () in place of y (a+1, 4, +1, u; t). We obtain, with the aid of Lemma 3,

d
B+DP b, (Bs1) = ;l—t{tﬂ+1¢u(ﬁ+1§t)} =
d +1 :
:-C-Z—t{tﬁ j(/)i(oc-l—l;tu)dx(u)} =

1 1
= (a+ D)’ [ ¢y (astu)ydyu) + (B—a)t? | ¢y(a+15tu)dy(u) =
0 0

1
= (a+1)t" | ¢, (o; tu) dy (u) +

+B—a)(a+1)t? [ u*g, («; tu) du fl p " L dy (v) .

0
Thus 1
¢, (B 1) = g ¢, (o5 tu) dyy (u) , (16)
where 1
W (u) = (ot 1) {X(u) + (B —a) f w*dw f p ! dx(‘v)} . (17)
(f+1)
Hence, for Rz>0, ’ i

1 1 1

tzd://(t)=(a—+»1—) Fdy () + (B—oa) | £7*dt | v dy (v)p =
(f+1) : :

0 t
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1 1 v
il [ v [t [ra) -
_(OC"I"I) . ﬁ—OC 18
= G+ D T(oc—i—l,l,ﬁ%—l,u,a){l+———————~—Z+O€+1}, (18)

by the result obtained by replacing «, by «+1, f+1 in (14). It now follows
at once from the definition of T («, 4, B, u; z) that

jl £y (t) = T(o, A, By 115 2) . (19)

We may suppose ¥ (¢) normalised by taking

Y(0) =0 Y@ =;WtH)+y(E-) O<i<I).

If y (o, A, B, ;1) is similarly normalised, it follows from (14) and (19) with
the aid of the uniqueness theorem for Mellin transforms that

W (t) = (o, A, B, 15 0) .

The proof of the theorem is thus completed.

5. It is easily seen that, whenever the transformation (7) is regular,
it is also absolutely regular; that is, it transforms any absolutely convergent
function (that is to say, a function of bounded variation in (0, 00)) into an
absolutely convergent function. The proof of the theorem therefore shows
that the result remains true if we replace summability by absolute sum-
mability throughout.
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