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APERÇU SUR LA NOTION DE QUASI-COMPOSANTE
D'UN ESPACE TOPOLOGIQUE1)

K. Kuratowski

A la mémoire de J. Karamata

§ 1. Topologie-quotient. Rappelons quelques notions et théorèmes

dont nous allons nous servir dans la suite (comp. [1], p. 42, et [5], vol. T,

§19).
Soit x~y une relation d'équivalence définie pour les éléments d'un

espace X. Cette relation induit une décomposition de X en ensembles

disjoints qui s'obtient en rangeant dans un même ensemble deux éléments .v

et y lorsque x~y et dans ce cas seulement. La famille de tous ces ensembles

(nommés classes d'équivalence) est dite espace-quotient et est désignée X\ ~.
Soit P (x) le membre de X\~ qui contient x; c'est-à-dire x e P (x) e (X/~).
L'application P: X->(Xj~) est nommée projection de X sur X/~.

L'espace X étant supposé topologique, on munit X/~ d'une structure
topologique, nommée topologie-quotient, en convenant qu'un sous-
ensemble E de 17 ~ est ouvert dans ce cas et dans ce cas seulement lorsque
l'union des ensembles-éléments de E est un sous-ensemble ouvert de X;
ou bien, ce qui revient au même: E est fermé dans X/~ lorsque l'union
de ses éléments est fermée dans X.

Evidemment, l'application P est continue. Plus encore, si Gc 1 est union
de membres de X/~, G est ouvert (fermé) lorsque P (G) est ouvert (fermé)
et dans ce cas seulement.

La relation x~y est dite fermée lorsque l'ensemble de couples <x, >')
tels que x—y est fermé dans le produit Ixl. On démontre le théorème
suivant (cf. [5], vol. I, p. 140).

Théorème 1. Si l'espace-quotient X/~ est un espace de Hausdorff
(autrement dit, est un espace séparé), la relation x~y est fermée.

1) Cette note contient les principaux résultats présentés dans ma conférence tenue le 11 mai 1967 à
l'Université de Genève.

J'y ai réuni quelques théorèmes et exemples nouveaux en les complétant des résultats connus qui m'ont
paru intéressants au point de vue de leur généralité ou de leurs applications.



— 202 —

Théorème 2. Etant donné deux relations d'équivalence ~ et « dont la

première implique la deuxième en symbole c 'est-à-dire que

x~y=>xœy), Vespace-quotient X/« est une image continue de X/~.
P/ws précisément% en faisant correspondre à Ae(X/~) l'ensemble

B (A) e (X/«) qui contient A, l'application B: (X/~)->(X/«) est continue.

Soit, en effet, EcI/ä. On constate aussitôt que l'union des ensembles-

éléments de P-1 (E) est identique à celle des ensembles-éléments deE, et la
dernière est ouverte dans X dès que E est ouvert dans X/œ. Il en résulte

que B"1 (E) est ouvert dans X/~.

§ 2. Connexité. Composantes. Rappelons qu'un espace topologique
est dit connexe lorsqu'il n'admet pas de décomposition en deux ensembles

fermés, non vides et disjoints.
Par conséquent, un sous-ensemble d'un espace topologique est connexe

lorsqu'il n'admet pas de décomposition en deux ensembles non vides AztB
tels que

An B 0 An B

(Ä désignant la fermeture de A).
Convenons que dorénavant x~y veut dire que x et y se laissent unir

par un sous-ensemble connexe de l'espace X. Bien entendu, la relation x~y,
ainsi définie, est une relation d'équivalence et les membres de l'espace-

quotient X/ ~, nommés composantes de X, sont les sous-ensembles maximaux

connexes de X. Autrement dit, la composante de x, désignée comme

auparavant P (x), est l'union de tous les sous-ensembles connexes de X qui
contiennent x.

Le problème s'impose de reconnaître quelles sont les propriétés de

l'espace X qui se conservent par le passage à l'espace-quotient Xj ~
La propriété d'être un espace Tx se conserve évidemment puisque les

composantes sont des ensembles fermés. Cependant, il n'en est rien de la

propriété d'être un espace de Hausdorjf. Pour s'en convaincre, il suffit

(comme nous l'avons mentionné dans le § 1) de définir un espace de Haus-

dorff pour lequel la relation x~y n'est pas fermée. Tel est l'espace E suivant

(qui est d'ailleurs métrique).

Exemple 1. Soit E un ensemble qui est situé sur le plan Jx 7 et se

compose des points p (0, 0), q (1, 0) et des segments (0<x< 1,^=1/«)
où n 1, 2, En posant pn (0, l/n) et qn (1, 1 /»), il vient

lim pn p, lim qn q et pn ~ qn
n~>oo n ->-oo

tandis que p non ~q. Cela prouve que la relation ~ n'est pas fermée.
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§ 3. Connexité entre deux points. Quasi-composantes. L'espace A est

dit connexe entre x et y, en symbole x&y, lorsque X ne se laisse pas décomposer

en deux ensembles ouverts disjoints G et H tels que xeG et yeH\ ou

bien — ce qui revient au même — lorsqu'il n'existe aucun ensemble fermé-

ouvert F tel que x e F et y e X—F.
La relation x&y est une relation d'équivalence. Les classes d'équivalences,

c'est-à-dire les membres de l'espace-quotient X/te (que nous

désignerons aussi £ (X)), sont nommées quasi-composantes de l'espace X. En

désignant par Q la projection de X sur X/&, Q (x) est donc la quasi-

composante du point x dans X. On constate facilement que Q (x) est l
'intersection de tous les ensembles fermés-ouverts qui contiennent x. En outre,
si F est fermé-ouvert et F n Q (x) ^ 0, on a Q (x) c F.

En ce qui concerne le rapport des relations ^ et on constate aussitôt

que si les points x et y se laissent unir par un sous-ensemble connexe de X,
l'espace X est connexe entre ces points. En symbole, ~ cr « ; ou encore:
la composante du point x est contenue dans sa quasi-composante. Cependant
elle ne lui est pas nécessairement identique; telle est, dans l'exemple 1, la

composante du point p, qui se réduit à ce point, tandis que la quasi-composante

de p se compose de deux points, p et q.
L'inclusion ~ c= « implique en vertu du théorème 2 le suivant:

Théorème 3. X/œ est image continue cle X/~.
§ 4. Espaces totalement discontinus. Un espace topologique est dit

totalement discontinu lorsque toutes ses quasi-composantes se réduisent à

des points individuels. Autrement dit: lorsque cet espace n'est connexe
entre aucun couple de ses points2).

Evidemment, tout espace totalement discontinu est un espace de Haus-
dorff.

Théorème 4. L 'espace £ (X) est totalement discontinu ; il est donc un

espace de Hausdorff.
Soient, en effet, P et R deux éléments différents de £ (A). Il existe donc

un ensemble H fermé-ouvert c= X tel que Pc H st HnR 0. L'ensemble
Q (H) c= £ (X) est donc aussi fermé-ouvert, P e Q (H) et R e Q (X—H). Par
conséquent, £ (A) n'est pas connexe entre P et R.

Remarque 1. Il en résulte (cf. § 1) que la relation x^y est fermée. Cette
propriété de la relation x&y présente un avantage essentiel envers la relation

x~y.

Ce terme est employé parfois dans un sens différent.

T 'PnesiirnAmpnt mofliôm + Y\T
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Remarque 2. L \espace £ (X) n 'est pas nécessairement régulier (même

dans le cas où X est métrique). Tel est l'exemple suivant, dû à M. Lelek.

Rappelons d'abord qu'un espace topologique E est dit régulier lorsque,

pour tout ensemble fermé F et tout point p e E— F, il existe deux ensembles

ouverts et disjoints G et H tels que p e G et Fa H.
Or, soit X l'espace situé sur le plan euclidien et composé des parties

suivantes (qui en sont, en même temps, les quasi-composantes):

1° les segments verticaux (xnk, 0<j><1), où

xn,k (1/2") + (l/2fc) et n 0,1, k n+1, n+2,
2° de l'ensemble F des points (1/2", 1) où n 0, 1,

3° du point p (0, 0).

On constate facilement qu'il n'existe aucun couple d'ensembles ouverts,
disjoints G et H tels que p g G, FczEf et qui soient unions des quasi-composantes

de X.

Il en résulte que l'espace £ (X) n'est pas régulier.

Théorème 5. Si X est totalement discontinu, l'espace £ (X) lui est

homéomorphe.
En effet, en attachant à tout xe X l'ensemble {x} composé du point x,

on définit l'homéomorphisme demandé.

Remarques. Il en résulte que l'espace £ (X) n'est pas nécessairement

de dimension 0, car il existe des espaces totalement discontinus (complets
séparables) de dimension arbitraire (voir [8], p. 311).

Ajoutons que l'on peut introduire dans l'espace £ (X) une topologie
(différente de la topologie-quotient) dans laquelle dim £ (X) 0, quel que
soit X (cf. [2] et [7]). Bien entendu, pour cette topologie, le théorème 5 est

en défaut.

§ 5. Rapports au discontinu de Cantor généralisé. Désignons par D
l'ensemble composé de deux points 0 et 1. Le produit cartésien dénom-

brable F>xo est bien le discontinu de Cantor, désigné par C. Si m est un
nombre cardinal arbitraire, Dm est nommé discontinu de Cantor généralisé.

Lemme. Si X est totalement discontinu, il existe une fonction continue

biunivoque (une injection) f: X->Dm, où m est un nombre cardinal convenablement

choisi.

Plus précisément, si {Ft} où t g T, est une famille d'ensembles fermés-

ouverts telle qu 'à tout couple x0 =# x1 correspond un t e T tel que x0 g Fr et

Xjl g X — F„ — on peut admettre que m est la puissance de T.
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Posons, en effet, f (x) 1 si x e Ft et f (x) 0 dans le cas contraire.

Ft étant fermé-ouvert, f est une fonction continue pour t fixe. Donc, en

assignant à x le point {ft (x)} de Dm, on définit une fonction continue

/: X-> Dm. Cette fonction (dite fonction caractéristique de la famille {Ft})
est biunivoque en vertu de la discontinuité totale de X.

Théorème 6. Pour tout espace X, il existe une application continue

g: X->Dm telle que les quasi-composantes de X coïncident avec les images

inverses g-1 (y) des points y e g (X).
On peut, en effet, définir g comme la fonction composée g fP, où P

est la projection de X sur £ (X) et/est la fonction envisagée dans le lemme,

en y remplaçant X par £ (X) (rappelons que £ (X) est totalement discontinu

d'après le théorème 4).

Remarques. Si l'espace totalement discontinu X admet une base

dénombrable, il existe — comme on démontre facilement (cf. [4], p. 91,

théorème 6 et [5], vol. II, p. 144, théorème 6) — une famille dénombrable

{Ft} satisfaisant aux conditions du lemme. Par conséquent, l'ensemble Dm

peut être remplacé dans ce lemme par le discontinu de Cantor C.

On démontre aussi (ibid., p. 148, théorème 3) que — d'une façon
analogue — dans le théorème 6, Dm peut être remplacé par C pourvu que X
contienne une base dénombrable.

De plus, si X est métrique séparable, les fonctions g: X->C qui satisfont
à la thèse du théorème 6 constituent un ensemble résiduel dans l'espace
fonctionnel Cx.

§ 6. Autres propriétés des quasi-composantes. Parmi les autres
propriétés importantes des quasi-composantes, citons les suivantes (sans

démonstration).

Théorème 7 (de compactification). Tout espace métrique séparable X
est contenu topologiquement dans un espace compact Y tel que deux quasi-
composantes distinctes de X sont contenues toujours dans deux quasi-composantes

distinctes de Y.
De plus, en désignant par H le cube de Hilbert IK0, les homéomorphies

f: X->H telles que l'ensemble Y f (X) satisfait aux conditions précitées,
constituent un ensemble résiduel dans l'espace fonctionnel H* (voir [4], p. 93

ou [5], vol. II, p. 149).

Remarque. La première partie du théorème reste vraie pour les

espaces T1 complètement réguliers. On peut, en effet, remplacer Y par ßX
(dans le sens de Cech-Stone). Car en supposant que x0 non &x1 et que Z
est un ensemble fermé-ouvert dans X tel que x0eZet XjeX-Z, la fonc-
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tion caractéristique/de Z (relativement à X) se laisse étendre à une fonction
continue g aux valeurs 0 et 1, définie sur ßX tout entier; de sorte que
x0 e g'1 (0) et x1eg~l (1), donc x0 non relativement à ßX.

Il est toutefois à remarquer que, dans le cas d'espace X métrique sépa-
rable (indénombrable), la compactification envisagée dans le théorème 7

n'augmente pas la puissance, tandis que, en général, la puissance de ßX
est supérieure à celle de X.

Théorème 8. Si X est un espace de Hausdorff compact ou localement

connexe, ses quasi-composantes sont connexes. Elles coïncident donc avec les

composantes de X (cf. [3], p. 227).
En outre — dans le premier cas — / 'espace £ {X) est compact (voir [5],

vol. II, p. 151, théorème 4, et p. 235, théorème 18).

Théorème 9. Soient Y un rétracte de voisinage métrique séparable et X
un espace métrique. Les quasi-composantes de l'espace fonctionnel Yx
coïncident avec ses composantes.

En outre, / 'espace £ (Yx) est complètement régulier. Il est discret si X
est compact. Enfin, il est homéomorphe à un espace complet séparable de

dimension 0 si X est séparable et localement compact (voir [5], vol. II, p. 384).

Remarques. L'espace £ Yx) admet des applications importantes dans

le cas où X est un sous-ensemble de l'espace euclidien En (/?>2) et

Y En — (0).

Dans ce cas £ Yx) est un groupe topologique (nommé ?i-eme groupe de

cohomotopie si X est compact).
Le cas n 2 est particulièrement simple, car la multiplication des

membres du groupe £ Yx) est induite par la multiplication des nombres

complexes non nuls.

Les applications du groupe £ Yx) concernent en particulier les

problèmes de coupure de la sphère Sn et servent à établir des théorèmes de

dualité (vcir [5], vol. II, § 60, VIII-X).
Citons, à titre d'exemple, le théorème de dualité suivant (voir [6]):

Théorème 10. Soient Xc=En, p, q e Sn — X et Pn En — (0). Pour que

les points p et q appartiennent à la même quasi-composante de Sn — X, il
faut et il suffit que les translations x —p et x —q appartiennent à la même

quasi-composante de P*; c'est-à-dire

(p^q dans S„-X) (x — p^x-q dans P*)

Comme cas particulier, on obtient le théorème de Borsuk: pour que
l'ensemble Sn — X soit connexe, il faut et il suffit que l'espace P* le soit.
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