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APERCU SUR LA NOTION DE QUASI-COMPOSANTE
D’UN ESPACE TOPOLOGIQUE 1Y)

K. KURATOWSKI

A la mémoire de J. Karamata

§ 1. Topologie-quotient. Rappelons quelques notions et théorémes
dont nous allons nous servir dans la suite (comp. [1], p. 42, et [5], vol. I,
§ 19).

Soit x~y une relation d’équivalence définie pour les éléments d’un
espace X. Cette relation induit une décomposition de X en ensembles dis-
joints qui s’obtient en rangeant dans un méme ensemble deux éléments x
et y lorsque x~ y et dans ce cas seulement. La famille de tous ces ensembles
(nommés classes d’équivalence) est dite espace-quotient et est désignée X/~.
Soit P (x) le membre de X/~ qui contient x; c’est-a-dire x € P (x) € (X/~).
L’application P: X—(X/~) est nommée projection de X sur X/~.

L’espace X étant supposé topologique, on munit X/~ d’une structure
topologique, nommée fopologie-quotient, en convenant qu'un SouUS-
ensemble E de X/~ est cuvert dans ce cas et dans ce cas seulement lorsque
I’'union des ensembles-éléments de E est un sous-ensemble ouvert de X;
ou bien, ce qui revient au méme: E est termé dans X/~ lorsque 1'union
de ses €léments est fermée dans X.

Evidemment, /’application P est continue. Plus encore, si G = X est union
de membres de X/~ , G est ouvert (fermé) lorsque P (G) est ouvert (fermé)
et dans ce cas seulement.

La relation x~y est dite fermée lorsque I'’ensemble de couples {x, »>
tels que x~y est fermé dans le produit X <X X. On démontre le théoréme
suivant (cf. [5], vol. I, p. 140).

Théoréme 1. Si [’espace-quotient X/~ est un espace de Hausdorff
(autrement dit, est un espace séparé), la relation x~y est fermée.

.1) Cette note contient les principaux résultats présentés dans ma conférence tenue le 11 mai 1967 a
I’Université de Genéve.

L[’y ai réuni quelque.:s théorémes et exemples nouveaux en les complétant des résultats connus qui m’ont
paru intéressants au point de vue de leur généralité ou de leurs applications.
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Théoréme 2. Etant donné deux relations d’équivalence ~ et ~ dont la
premiere implique la deuxiéme (en symbole ~ c =, c’est-a-dire que
X~y=>X~Yy), [’espace-quotient X/~ est une image continue de X/~.

Plus précisément, en faisant correspondre a A € (X/~) [’ensemble
B (A) e (X/=) qui contient A, [’application B: (X/~)—(X/=~) est continue.

Soit, en effet, Ec X/~. On constate aussitot que I'union des ensembles-
éléments de B™! (E) est identique a celle des ensembles-éléments de E, et la
derniére est ouverte dans X dés que E est ouvert dans X/~. Il en résulte
que B~ ! (E) est ouvert dans X/~.

§ 2. Connexité. Composantes. Rappelons qu’un espace topologique
est dit connexe lorsqu’il n’admet pas de décomposition en deux ensembles
fermés, non vides et disjoints.

Par conséquent, un sous-ensemble d’un espace topologique est connexe
lorsqu’il n’admet pas de décomposition en deux ensembles non vides 4 et B

tels que
ANnB =0 =AnNB

(A désignant la fermeture de A).

Convenons que dorénavant x~y veut dire que x et y se laissent unir
par un sous-ensemble connexe de ’espace X. Bien entendu, la relation x~y,
ainsi définie, est une relation d’équivalence et les membres de I’espace-
quotient X/~, nommés composantes de X, sont les sous-ensembles maxi-
maux connexes de X. Autrement dit, la composante de x, désignée comme
auparavant P (x), est 'union de tous les sous-ensembles connexes de X qui
contiennent Xx.

Le probléme s’impose de reconnaitre quelles sont les propriétés de
I’espace X qui se conservent par le passage a ’espace-quotient X/~ ?

La propriété d’étre un espace T; se conserve €¢videmment puisque les
composantes sont des ensembles fermés. Cependant, il n’en est rien de la
propriété d’étre un espace de Hausdorff. Pour s’en convaincre, il suffit
(comme nous 1’avons mentionné dans le § 1) de définir un espace de Haus-
dorff pour lequel 1a relation x ~y n’est pas fermée. Tel est ’espace E suivant
(qui est d’ailleurs métrique).

Exemple 1. Soit E un ensemble qui est situé sur le plan XX Y et se
compose des points p = (0, 0), g = (1, 0) et des segments (0<x <1, y=1/n)
oun=1,2,.. En posant p, = (0, 1/n) et g, = (1, 1/n), 1l vient

lim p, = p, lim q, = q et p, ~ 4,

tandis que p non ~gq. Cela prouve que la relation ~ n’est pas fermée.
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§ 3. Connexité entre deux points. Quasi-composantes. L’espace X est
dit connexe entre x et y, en symbole x~x y, lorsque X ne se laisse pas décom-
poser en deux ensembles ouverts disjoints G et H tels que xeG et yeH; ou
bien — ce qui revient au méme — lorsqu’il n’existe aucun ensemble fermé-
ouvert F tel que xe Fet ye X—F.

La relation x~y est une relation d’équivalence. Les classes d’équiva-
lences, c’est-a-dire les membres de ’espace-quotient X/=x (que nous dési-
gnerons aussi € (X)), sont nommées quasi-composantes de 'espace X. En
désignant par Q la projection de X sur X/, Q (x) est donc la quasi-
composante du point x dans X. On constate facilement que Q (x) est [ ’inter-
section de tous les ensembles fermés-ouverts qui contiennent X. En outre,
si F est fermé-ouvert et Fn Q (x) # 9, on a Q (x) « F.

En ce qui concerne le rapport des relations ~ et &, on constate aussitot
que si les points x et y se laissent unir par un sous-ensemble connexe de X,
I’espace X est connexe entre ces points. En symbole, ~ < = ; ou encore:
la composante du point X est contenue dans sa quasi-composante. Cependant
elle ne lui est pas nécessairement identique; telle est, dans I'exemple 1, la
composante du point p, qui se réduit a ce point, tandis que la quasi-compo-
sante de p se compose de deux points, p et g.

L’inclusion ~ < ~ implique en vertu du théoréme 2 le suivant:

Théoréme 3. X/~ est image continue de X/~.

§ 4. Espaces totalement discontinus. Un espace topologique est dit
totalement discontinu lorsque toutes ses quasi-composantes se réduisent a
des points individuels. Autrement dit: lorsque cet espace n’est connexe
entre aucun couple de ses points 2).

Evidemment, fout espace totalement discontinu est un espace de Haus-
dorff.

Théoreme 4. L’espace L (X) est totalement discontinu ; il est donc un
espace de Hausdorff.

Soient, en effet, P et R deux éléments différents de L (X). Il existe donc
un ensemble H fermé-ouvert < X tel que P H et HN R = @. L’ensemble
Q (H)=2 (X) est donc aussi fermé-ouvert, Pe QO (H) et Re Q (X~ H). Par
conséquent, £ (X) n’est pas connexe entre P et R.

Remarque 1. 1l en résulte (cf. § 1) que la relation xxy est fermée. Cette
propriét€ de la relation x~y présente un avantage essentiel envers la rela-
tion x~y.

1) Ce terme est employé parfois dans un sens différent.

F’Fnceionameant mathdm + YV
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Remarque 2. L’espace L (X) n’est pas nécessairement régulier (méme
dans le cas ou X est métrique). Tel est I’exemple suivant, dii a M. Lelek.

Rappelons d’abord qu’un espace topologique E est dit régulier lorsque,
pour tout ensemble fermé F et tout point p € E— F, il existe deux ensembles
ouverts et disjoints G et H tels que pe G et Fc H.

Or, soit X I’espace situé sur le plan euclidien et composé des parties
suivantes (qui en sont, en méme temps, les quasi-composantes):

1o les segments verticaux (x,,, 0<<y<(1), ol
Xop= 12"+ (12 e n=0,1,.., k=n+l, nt2,..
20 de I’ensemble F des points (1/2",1) ou n=0,1, ..
3% du point p = (0, 0).
On constate facilement qu’il n’existe aucun couple d’ensembles ouverts,
disjoints G et H tels que p € G, F< H et qui soient unions des quasi-compo-

santes de X.
Il en résulte que I’espace £ (X) n’est pas régulier.

Théoréme 5. Si X est totalement discontinu, [’espace L (X) lui est
homéomorphe.

En effet, en attachant a tout x € X ’ensemble {x} composé du point x,
on définit 'homéomorphisme demandé.

Remarques. 11 en résulte que I'espace £ (X) n’est pas nécessairement
de dimension 0, car il existe des espaces totalement discontinus (complets
séparables) de dimension arbitraire (voir [8], p. 311).

Ajoutons que 1'on peut introduire dans I’espace £ (X) une topologie
(différente de la topologie-quotient) dans laquelle dim £ (X) = 0, quel que
soit X (cf. [2] et [7]). Bien entendu, pour cette topologie, le théoréme 5 est
en défaut.

§ 5. Rapports au discontinu de Cantor généralisé. Désignons par D
I’ensemble composé de deux points O et 1. Le produit cartésien dénom-
brable D™° est bien le discontinu de Cantor, désigné par C. Si m est un
nombre cardinal arbitraire, D™ est nommé discontinu de Cantor généralisé.

Lemme. Si X est totalement discontinu, il existe une fonction continue
biunivoque (une injection) f: X—D"™, ott m est un nombre cardinal convena-
blement choisi.

Plus précisément, si {F,} ou teT, est une famille d’ensembles fermés-
ouverts telle qu’a tout couple x, # Xy correspond un te T tel que X, € F, et
x, € X — F,, — on peut admettre que m est la puissance de T.
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Posons, en effet, £, (x) = 1 si x € F, et f; (x) = 0 dans le cas contraire.
F, étant fermé-ouvert, f; est une fonction continue pour ¢ fixe. Donc, en
assignant 2 x le point {f;(x)} de D™, on définit une fonction continue
f: X— D™ Cette fonction (dite fonction caractéristique de la famille {F})
est biunivoque en vertu de la discontinuité totale de X.

Théoréme 6. Pour tout espace X, il existe une application continue
g: X—D™ telle que les quasi-composantes de X coincident avec les images
inverses g~ * (y) des points y € g (X).

On peut, en effet, définir g comme la fonction composée g = f P, ou P
est la projection de X sur £ (X) et fest la fonction envisagée dans le lemme,
en y remplagant X par £ (X) (rappelons que £ (X) est totalement discontinu
d’aprés le théoréme 4).

Remarques. Si Despace totalement discontinu X admet une base
dénombrable, il existe — comme on démontre facilement (cf. [4], p. 91,
théoréme 6 et [5], vol. II, p. 144, théoréme 6) — une famille dénombrable
{F,} satisfaisant aux conditions du lemme. Par conséquent, ’ensemble D™
peut étre remplacé dans ce lemme par le discontinu de Cantor C.

On démontre aussi (ibid., p. 148, théoréme 3) que — d’une fagon ana-
logue — dans le théoréme 6, D™ peut €tre remplacé par C pourvu que X
contienne une base dénombrable.

De plus, si X est métrique séparable, les fonctions g: X—C qui satisfont
d la thése du théoréme 6 constituent un ensemble résiduel dans [’espace fonc-
tionnel C*.

§ 6. Autres propriétés des quasi-composantes. Parmi les autres pro-
priétés importantes des quasi-composantes, citons les suivantes (sans
démonstration).

Théoreme 7 (de compactification). Tout espace métrique séparable X
est contenu topologiquement dans un espace compact Y tel que deux quasi-
composantes distinctes de X sont contenues toujours dans deux quasi-compo-
santes distinctes de Y.

De plus, en désignant par H le cube de Hilbert 1%°, les homéomorphies
f: X—>H telles que l'ensemble Y = 'f_(}Zj satisfait aux conditions précitées,
constituent un ensemble résiduel dans I'espace fonctionnel H* (voir [4], p. 93
ou [5], vol. II, p. 149).

Remarque. La premiere partie du théoréme reste vraie pour les
espaces 7; completement réguliers. On peut, en effet, remplacer Y par X
(dans le sens de Cech-Stone). Car en supposant que x, non x~x; et que Z
est un ensemble fermé-ouvert dans X tel que x, € Z et x, € X — Z, la fone-
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tion caractéristique /' de Z (relativement a X) se laisse étendre a une fonction
continue g aux valeurs 0 et 1, définie sur fX tout entier; de sorte que
xo€g ' (0) et x, eg ' (1), donc x, non ~xx, relativement a SX.

Il est toutefois a remarquer que, dans le cas d’espace X métrique sépa-
rable (indénombrable), la compactification envisagée dans le théoréme 7
n’augmente pas la puissance, tandis que, en général, la puissance de fX
est supérieure a celle de X.

Théoréme 8. Si X est un espace de Hausdorff compact ou localement
connexe, ses quasi-composantes sont connexes. Elles coincident donc avec les
composantes de X (cf. [3], p. 227).

En outre — dans le premier cas — [’espace L (X) est compact (voir [5],
vol. II, p. 151, théoreme 4, et p. 235, théoréme 18).

Théoréeme 9. Soient Y un rétracte de voisinage métrique séparable et X
un espace métrique. Les quasi-composantes de [’espace fonctionnel Y*
coincident avec ses composantes.

En outre, l’espace & (YY) est complétement régulier. Il est discret si X
est compact. Enfin, il est homéomorphe a un espace complet séparable de
dimension 0 si X est séparable et localement compact (voir [5], vol. I, p. 384).

Remarques. L’espace £ (Y*) admet des applications importantes dans
le cas ou X est un sous-ensemble de I’espace euclidien E"(n>2) et
Y = E" — (0).

Dans ce cas € (Y*) est un groupe topologique (nommé n-"° groupe de
cohomotopie si X est compact).

Le cas n = 2 est particulierement simple, car la multiplication des
membres du groupe £ (Y*) est induite par la multiplication des nombres
complexes non nuls.

Les applications du groupe £ (Y”¥) concernent en particulier les pro-
blémes de coupure de la sphére S, et servent a établir des théorémes de
dualité (vcir [3], vol. 11, § 60, VIII-X).

Citons, a titre d’exemple, le théoréme de dualité suivant (voir [6]):

Théoréme 10. Soient X<E", p,qeS,—X et P, = E"—(0). Pour que
les points p et q appartiennent a la méme quasi-composante de S,—X, il
faut et il suffit que les translations X—p et Xx—( appartiennent a la méme
quasi-composante de PY: ¢’est-a-dire

(p~q dans S,—X) = (Xx—p~x—q dans PYy.

.Comme cas particulier, on obtient le théoréme de Borsuk: pour que
D’ensemble S,— X soit connexe, il faut et il suffit que [’espace P¥ le soit.



— 207 —

OUVRAGES CITES

[1] BourBaki, N. Topologie générale, chap. 1, 1961.

[2] pe Groor, J. Indag. Mathem., 9 (1947), p. 94.

[31 Kuratowskl, K. Introduction a la théorie des ensembles et a la topologie. Monogr.
Ens. Math., 15 (1966).

[4] Topologie, vol. II, 3¢ éd. Mon. Mat., Varsovie 1961.
[S] —— Topology, Academic Press, vol. I (1966), vol. II, sous presse.
[6] —— Un critere de coupure de I’espace euclidien par un sous-ensemble arbitraire.

Math. Zeitschr., 72 (1959), p. 88.

[7] LeLex, A. On the Knaster totally disconnected sets. Bull. Acad. Polon. Sc., 15
(1967), p. 81.

[8] MaAzurkiewicz, S. Fundam. Math., 10 (1927).

( Regu le 1€t mai 1968)
Prof. K. Kuratowski
Vice-président de I’Académie des Sciences
Palais de la culture et des sciences
Varsovie







	APERÇU SUR LA NOTION DE QUASI-COMPOSANTE D'UN ESPACE TOPOLOGIQUE
	...


