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En particulier, F% n F* et F* n F% sont d’aires nulles, et il en est de
méme pour leurs transformées par les affinites horizontales de rapport 4
appliquant respectivement F% et F* sur F.

Il suit de 13 que la partie de F située au-dessous de la droite y = % est
d’aire nulle. Pour presque tout u dans [0, ], 'ensemble (1— wE+ 3 uk
est donc de mesure nulle. Autrement dit, pour presque tout A dans [0, ],
E - JE est de mesure nulle. Or, pour tout 4 >0 et tout entier n > 0,
E - JE est la réunion de 2" ensembles translatés de E + 447" E. Donc
E -+ JE est de mesure nulle pour presque tout A positif, ce qui démontre
les propositions 2) et 4).
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Figure 1

II. UNE FONCTION DE CLASSE C® LOCALEMENT POLYNOMIALE

Mandelbrojt a indiqué un procédé de construction de fonctions de
classe C* a support compact, par régularisations successives (cf. [4]).
Nous allons constater que cette construction fournit une fonction localement
polynomiale sur le complémentaire d’un ensemble parfait symétrique donné.
On obtient ainsi sans peine des fonctions de classe C* et localement poly-
nomiales en dehors d’un ensemble parfait arbitrairement fin; une construc-
tion, moins simple, a €t¢ donnée par Donoghue [2].
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Soit r, une suite positive sommable () r,=b, < c0). Notons ¢, la fonction
1

paire égale a o sur [0, r,], et nulle sur [r,, o]. Soit £, la convolution
r

@, * @, * ... * @,. On vérifie que f, converge uniformément vers une fonction
f de classe C” et de support [—b,, by] quand n — oo [4].

Posons b, =r,,y +r,., + ... et supposons maintenant r, > b,
(n=1, 2, ...). L’ensemble des points ) ¢,r, (¢,= +1) est un ensemble parfait
1

symétrique que nous noterons E. A une translation pres, tout ensemble
parfait symétrique est de cette forme, pour un choix convenable de la suite
r,. Pour construire £, on peut procéder par €tapes: on part du segment
[—bo, by] (blanc) et on 6te en son centre un intervalle [—r;+by, r; —b,]
(noir); il reste deux segments blancs [er;—b,, e,7{+b;], et on répéte
Iopération, de sorte qu'a la n-ieme €tape ’ensemble restant, E,, soit la
réunion des 2" segments blancs [e,r{-+te,ry+.te,r,—b,, 4716275+
+...4e,,+b,]. E est lintersection des E,. L’ensemble E\E,,; est
I’ensemble noirci a la #n-iéme étape.

Observons que si f,, est un polynome de degré p sur un intervalle [, ] de
longueur > 2r,.,, il en est de méme de f,,; = f, * ©,4, sur l'intervalle
[x+r,4 1, B—7n4 1] Donc, si f, est un polynome de degré p sur un intervalle
[«, f] de longueur > 2b,, il en est de méme de f sur lintervalle [«-}b,,
f—>b,]. Or f, est constant sur 'intervalle [ —r,, 1], f, est linéaire sur chacun
des segments [e,r, —F,, €171 +F,], /5 est parabolique sur chacun des segments
[e,r{-Le,ry—rs, €1 -Fe,r,+ 1] et ainsi de suite. Il s’ensuit que sur E,\E, , ;
(réunion des intervalles noircis a la n-iéme étape) f est localement un poly-
nome de degré n—1. Donc f est localement polynomiale en dehors de E.

III. UNE MESURE SINGULIERE ET PRESQUE LISSE

Zygmund a appelé fonctions lisses les fonctions f telles que

w, (f,1) = sup sup |f(x+1t) +f(x—t) —2f(x)| =o0(t) (t—0).

x |h| =t

Il a aussi introduit la classe A= des fonctions f pour lesquelles

w, (f,1) =0()  (t-0);
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