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En particulier, FS9 o Fgd et Edd o Fdg sont d aires nulles, et il en est de

même pour leurs transformées par les affinités horizontales de rapport 4

appliquant respectivement F" et Fdd sur F.

Il suit de là que la partie de F située au-dessous de la droite y i est

d'aire nulle. Pour presque tout ju dans [0, £], l'ensemble (1 -fi)E+ \ fiE

est donc de mesure nulle. Autrement dit, pour presque tout X dans [0, -g],

E + XE est de mesure nulle. Or, pour tout X > 0 et tout entier n > 0,

E + XE est la réunion de 2" ensembles translatés de E + X4~n E. Donc

E + XE est de mesure nulle pour presque tout X positif, ce qui démontre

les propositions 2) et 4).

II. Une fonction de classe C00 localement polynomiale

Mandelbrojt a indiqué un procédé de construction de fonctions de

classe C00 à support compact, par régularisations successives (cf. [4]).

Nous allons constater que cette construction fournit une fonction localement

polynomiale sur le complémentaire d'un ensemble parfait symétrique donné.
On obtient ainsi sans peine des fonctions de classe C00 et localement
polynomials en dehors d'un ensemble parfait arbitrairement fin; une construction,

moins simple, a été donnée par Donoghue [2].
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Soit rn une suite positive sommable (YJrn=b0 < °°)- Notons cpn la fonction
î

1

paire égale à — sur [0, rn], et nulle sur [rn, co]. Soit fn la convolution

cp1 * cp2 * * (pn. On vérifie que fn converge uniformément vers une fonction

/ de classe Cx et de support [ — b0, b0\ quand n oo [4].
Posons bn rn+1 + rn + 2 -f et supposons maintenant rn > bn

GO

(n= 1, 2, L'ensemble des points Y,£nrn (£n= ±^) est un ensemble parfait
î

symétrique que nous noterons E. A une translation près, tout ensemble

parfait symétrique est de cette forme, pour un choix convenable de la suite

rn. Pour construire E, on peut procéder par étapes: on part du segment
[ — bo, b0\ (blanc) et on ôte en son centre un intervalle [ — r1^-b1, r1—b1]
(noir); il reste deux segments blancs [s1rl~-b1,£1r1Jrb1], et on répète
l'opération, de sorte qu'à la «-ième étape l'ensemble restant, En, soit la
réunion des 2n segments blancs [81r1+s2r2 + --- +bm £1r1+e2^2 +
+-r-+V«+^«]- E est l'intersection des En. L'ensemble En\En+1 est

l'ensemble noirci à la w-ième étape.
Observons que si fn est un polynome de degré p sur un intervalle [a, ß] de

longueur > 2rn+u il en est de même de fn+1 fn * (pn+1 sur l'intervalle
[a+rn+1, ß — rn+1\. Donc, si fn est un polynome de degré p sur un intervalle
[a, ß] de longueur > 2bn9 il en est de même de / sur l'intervalle [a

ß — bn]. Or f1 est constant sur l'intervalle [~rlir1\,f2 est linéaire sur chacun
des segments [e1r1 — r2, e1r1 +r2],/3 est parabolique sur chacun des segments

[ßiri+®2r2~r3, eiri+e2r2+r3l et ainsi de suite. Il s'ensuit que surEn\En+1
(réunion des intervalles noircis à la «-ième étape) / est localement un
polynome de degré n— 1. Donc / est localement polynomiale en dehors de E.

III. Une mesure singulière et presque lisse

Zygmund a appelé fonctions lisses les fonctions / telles que

ah (/> 0 sup sup I f(x + t) +f(x — t) — 2f(x) | o (t) (t-> 0).
x \h\^t

Il a aussi introduit la classe A* des fonctions/pour lesquelles

co2{f,î)O(t) (t->0
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