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TROIS NOTES SUR LES ENSEMBLES PARFAITS LINEAIRES

J.-P. KAHANE

A la mémoire de J. Karamata

Les trois notes qui suivent ont pour seul trait commun de traiter de
problémes élémentaires mettant en jeu des ensembles parfaits totalement
discontinus sur la droite.

I. SEGMENTS JOIGNANT DEUX ENSEMBLES DE CANTOR

Besicovitch, puis Schoenberg, ont construit des ensembles plans d’aire
nulle et contenant un segment de longueur unité paralléle & n’importe quelle
direction (cf. [1]). Nous allons donner une variante, trés simple, de leur
construction, fondée sur I’étude des ensembles £ 4 AE, ou E est un ensemble
du type de Cantor.

Soit E I’ensemble parfait symétrique a rapport de dissection i, construit
sur le segment [0, 1], c’est-a-dire ’ensemble des points
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Dans le plan cartésien, ou les coordonnées sont notées x, y, considérons
Ies ensembles

Ey,: y=0, xek
E,:y=1, 2(x—¢&€E

I

(¢ réel donné). Soit F la réunion des segments du plan qui s’appuient sur
E, et E; (C’est-a-dire qui ont une extrémité sur E, et I'autre sur £,). On

désigne par I, et I, les segments supports de E, et E, respectivement.
Nous allons établir que

1) F contient un translaté au moins (et deux au plus) de tout segment qui
s ‘appuie sur 1, et 1;

2) F est un compact d’aire nulle.
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Ces propositions ne sont rien d’autre — nous allons le vérifier rapide-
ment — que 'expression géométrique des suivantes:

3) tout nombre entre O et 3 s’écrit au moins d’une fagon, et au plus de deux
fagons, sous la forme x + 3‘21, x € E, x' € E; en particulier, E + 1 E = [0, 3];

4) pour presque tout 4, I'ensemble E + AE est de mesure nulle (désor-
mais, mesure = mesure linéaire).

La proposition 3) est a peu prés évidente: tout nombre entre 0 et 3
s’écrit, au moins d’une fagon et au plus de deux fagons, sous la forme

32 2e, + ¢, ,
T PR g, = Ooul, &, = 0oul.
27 4"
La proposition 1) ne dépend pas du choix de &. Or, pour & = — 1,

2(x—&eFE < —2xekE. Dans ce cas, les longueurs des projections
horizontales des segments qui s’appuient sur £, et £, sont les nombres
X 4 % (xeE, x'eF), c’est-a-dire, d’apres la proposition 3), tous les nombres
entre 0 et 3. La proposition 1) en résulte, dans le cas ¢ = — 1, donc dans le
cas général.

Les points de F d’ordonnée u (0<u<C1) ont pour abscisses

(1—w)x + px’ (xeE,2(x"—&)€E).

I1 revient au méme de dire que F est d’aire nulle ou de dire que, pour presque
tout p dans [0, 1], I’ensemble

1
(1—wE+ E'UE

est de mesure nulle. Les propositions 2) et 4) sont donc équivalentes.
Désignons par E? et E¢ respectivement la moitié gauche et la moitié
droite de E; (i=0 ou 1), et désignons par F* (a=g ou d, f=g ou d) la
réunion des segments qui s’appuient sur E5 et E%. F est 1a réunion des quatre
ensembles F* (figure 1).
Or chaque F** s’obtient & partir de F par une affinité horizontale de rap-
port 1 (C’est-a-dire une transformation (x, y) — (x', »") de la forme

, X
x'=x0+z+,0y

’

y =y )-

Les aires des F** sont donc toutes égales au quart de celle de F. Les parties
communes & deux F*® sont donc d’aire nulle.
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En particulier, F% n F* et F* n F% sont d’aires nulles, et il en est de
méme pour leurs transformées par les affinites horizontales de rapport 4
appliquant respectivement F% et F* sur F.

Il suit de 13 que la partie de F située au-dessous de la droite y = % est
d’aire nulle. Pour presque tout u dans [0, ], 'ensemble (1— wE+ 3 uk
est donc de mesure nulle. Autrement dit, pour presque tout A dans [0, ],
E - JE est de mesure nulle. Or, pour tout 4 >0 et tout entier n > 0,
E - JE est la réunion de 2" ensembles translatés de E + 447" E. Donc
E -+ JE est de mesure nulle pour presque tout A positif, ce qui démontre
les propositions 2) et 4).
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Figure 1

II. UNE FONCTION DE CLASSE C® LOCALEMENT POLYNOMIALE

Mandelbrojt a indiqué un procédé de construction de fonctions de
classe C* a support compact, par régularisations successives (cf. [4]).
Nous allons constater que cette construction fournit une fonction localement
polynomiale sur le complémentaire d’un ensemble parfait symétrique donné.
On obtient ainsi sans peine des fonctions de classe C* et localement poly-
nomiales en dehors d’un ensemble parfait arbitrairement fin; une construc-
tion, moins simple, a €t¢ donnée par Donoghue [2].
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