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ASYMPTOTIC BEHAVIOUR OF A CLASS OF DETERMINANTS

by Mark Kac

To the memory of J. Karamata

1° Let f(0),O<0< 1, be a function which in addition to certain regularity
conditions, which will be specified later on, is bounded from below by a

number larger than 2. In other words,

(1.1) / (0) > m > 2.

Consider the determinant

0 < 0 < 1

(1.2) D„ (/)

/©, -1,0,...-. 0

-!>/©> "I- - • «

0, -1,/(f), -1, 0

•!>/©0, 0,

i.e. the determinant of the matrix

(i-3) aij

where ö, as usual, denotes the Kronecker delta.

Iff (0) is Riemann integrable it can be shown that

lim D"(/)=

(1.4) exp — J* dru J* log (/(0) — 2 cos G (/)
— 7t 0

This is a special case of a more general result of Kac, Murdock and
Szegô [1953].

Assuming that / (9) is twice differentiate, with a bounded second
derivative, one can go a good deal farther.

In fact, one can determine



(1.5) r A, CO
lim
n^œ G

with G( f as defined in (1.4).

Although the result is again a special case of a more general result
obtained by Mejlbo and Schmidt [1962] the method which we shall use
is quite different and of some interest in itself. The method has also the

advantage of explaining the role of smoothness conditions imposed on /.
2° We begin with the elementary formula

(2.1) Dn (/)

1

(V *)".
exp 1 - X/ + 2 y Xkxk + 1\ dx1 dx dx„

and note that setting

(2.2)
1 1 (I

K[x,y;~) -j=exp{--/(-)x2 -
1 // +1

we can rewrite (2.1) in the form

l
(2.3)

Dn (/)

(V7t)"
exp -f[-)x21} K(x1,x2;- \ K( x3;

••• K^x„_1,xn;r^j exp | dxi dx2 •

The kernels K (x, y ; ^) are not symmetric and we must replace them

by symmetric ones without introducing too large an error.
This is done by noting that

(2-4) /(- --/
1 l

+ —f4n n+i/G)+i/'G)+o(i
where the error 0 (1 /n2)isactually less than M/n2 where M is a bound for
./•" (8)in(0, 1).
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It follows that

(2.5) 1/
1=1

*? -
n -1

+ I I'fi +
4n "

i/(0)+i;/'<0))»; +

1 ///'(-]|*î + li/(r)+^/'|;)»

+ G/(1)1 i/,(I,Hj M" 2

n 1

and this suggests that we introduce the symmetric kernels

(2.6) Kjx,y,-=-=exp( +
V

1

2 \n

1

4n In'
x2 + 2xv

1 fl-(./(-I+ +

It should now be clear from (2.3) and (2.5) that Dn 2 (/) is contained
between the value of the integral

(2.7) exp -/«»

expI— Q/(!) + •••<&»

for a — M and its value for a M.

3° It will turn out that the asymptotic behaviour of (2.7), to the required
accuracy, does not depend on a so that we may as well set a 0.

The kernels K0(x, y; l/n) do not commute. However they "almost
commute " in the following sense :

Let l1(l/n)9 X2Q!n), be the eigenvalues of K0(x,y;l/ri) in the
decreasing order and let

cp^x-J/n),

be the corresponding normalized eigenfunctions.
Then

(3.1)
J

— 00

^X'-nn\X>-n
l + i\ c /1

dX <5;y + 0 1-2
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This follows by a perturbation argument but can also be obtained directly
since the eigenfunctions and eigenvalues of our kernels can be determined
explicitly.

I shall now ask the reader to believe me that whenever we have (3.1)
and whenever Afl/ri) — A2(l/n) is bounded away from 0 (uniform non-
degeneracy) the integral (2.7) divided by

(3.2) "n X, (-
1 1 \n

approaches

(3.3)

7z i J^1(x;0)exp|-^/(0)x2|dx j* 1) exp j - ^/(l)*2 dx

In ogher words, the asymptotic behaviour of the integral (2.7) is the

same as if the kernels K0 (x,y ; l/n) commuted. The details of the proof are
tedious but intuitively the assertions should be nearly obvious.

It remains now to calculate A1 (l/n) and (pt (x; l/n).
The kernels K0 are of the form

1 a 0 a 0
(3.4) ^exp|_2 x +2xy~2y

with a> 2 and it is easy to convince oneself that the principal eigenfunction
is of the form

(3.5) -tt= exp < — - y
i/b f b

CXP I 2

A simple calculation then gives

(3.6) b v/fl2-4
and for the maximum eigenvalue (a) the formula

(3.7, A. - (I+7 GT ~ ')
Setting

(3"8) +^/'G
we finally obtain that



(3.9) lim A CO

- -1

/(o) + y/2(Q)-4
2 ^/2 (0) - 4

/(l) + V/2(l)-4
2-^/2(l) -4

It remains to determine the asymptotic behavior of the product

n -1
(3.10)

1=1

n- 1

nU' + M) -1 =expElogM +
/

-1

Neglecting terms of order 1/n2 and higher we find easily that

/ "7

l08'i +

and hence

(3.11)

1 \ 2 -1 =log
/iA+ // - 4

nj 1

2 2«

/'

- 4

n — 1

Z lo§
/-i

+ i

f'iß)
Piß) -4

de + of-).
n,

Using the well known formula

l

i i
(3.12)

for

(3.13)

and noting that

l

i » - =» gmde-!M±£W +0ß

/,(e) + vgw - 4 l0/<°) + v»'(0) - 4

s/JW)



we obtain

z "*(? + ./(=) -0
(3.14)

„ I log/OT + y/'(0)-4 _ ,„/(0)W/-(0)-4 + o /r

Combining (3.14) with (3.9) and noting that

l
1

log G (/) — I dO I log(/(0) - 2 cos co)dco

0 — 71

1

i f(0) +V/2(0) -4
log dd

we are led to the final result that

/Q r A,(/) /(l) + V/2(i) -4
(3.15) lim —

«-co Gn(f) -4^/2(l) -4
4° If we set

00

(4.1) log (./ (6») - 2 cos co)X fiv(0)eivro
— 00

the right hand side of (3.15) can be shown to be equal to

(4.2) exp jl (h0 (1) - h0 (0))j exp £ vh\ (0) + vh2v (1)|.

This is in apparent disagreement with the formula of Mejlbo and Schmidt
since in their formula h0 (1 — h0 (0) is replaced by h0 (0) — h0 (1). We would
get complete agreement if instead of our determinant (1.2) we would
consider a modified determinant with/(0), /(£),/(f), / (^0 on the main
diagonal. So accurate is formula (3.15) that it is sensitive to so slight a

modification
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(Reçu le 1er mai 1968)
Mark Kac
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