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plus simple — mais néanmoins assez compliquée (18 pages) — d'un théorème

métrique (Théorème 1 dans [8]), dont il a aisément déduit son
théorème 2, qui est identique au cas n — 1 de notre théorème A. Le but
de cette note est de montrer que le cas n > 1 du théorème A peut être

aisément déduit du cas n 1, pour lequel le théorème est déjà connu.
Remarquons que les conditions de monotonie pour les fonctions (7) ne

sont pas trop gênantes, car il est naturel de n'examiner que des fonctions cp

d'allure assez régulière. Remarquons encore qu'il n'est pas nécessaire que
toutes les fonctions (7) soient du même type; il peut se faire, par exemple,

que cp (x) • x soit croissante, cp (x) • x% décroissante, etc.

Démonstration du théorème A pour n > 1

La convergence de (5) entraîne celle de

+ 00

j* (<{> (x))'" dx

A

On peut donc appliquer le cas n1 du théorème A: Il existe un système
propre

(1°) { On },i1, 2, m

tel que les inégalités (9) possèdent une infinité de solutions en nombres
entiers q,pu mais les inégalités analogues avec cp À (q) au lieu
de cp q)n'en possèdent qu'un nombre fini au plus. Choisissons un tel
système (10) et notons deux faits évidents:

I. Si l'on ajoute à notre système (10) un système quelconque de - 1)
nombres

(H) {%} (» 1,2,...,m;j2,3,...,n)

on obtient un système (8) tel que la matrice (1) admet l'approximation
<P (x).

II. (10) étant un système propre, alors, pour presque tous les
systèmes (11), le système (8) est un système propre.

Donc, pour achever la démonstration, il suffit de démontrer le Lemme
suivant:
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Lemme. Soit m ^ 1, n > 1, A ^ 1; soit (10) un système de m nombres
donné. Soit (p (x) une fonction continue et positive, x'1'1 (cp (x))m soit
décroissante pour x ^ A; l'intégrale (5) soit convergente. Désignons par M
l'ensemble de tous les points (11) de l'espace à m (n — 1) dimensions, pour
lesquels le système d'inégalités

I 0.1*1 + di2x2 + + einxn - Pi j < (p(x) (/ - 1, 2, m),
(12) | x *= Max (IXil, \x2\,|x„|)> 0

£ Max(|x2 j» Ix31, jxj) > 0

possède une infinité de solutions en nombres entiers (4). Alors j.i (M) 0

(ji (M) est la mesure de M).

Démonstration. Soit K le cube 0^df7<l (/--- 1, 2, m; j= 2, 3, /?)?

N MnK. Il suffit évidemment de montrer que // (N) « 0. Les nombres

(4) (entiers) étant donnés, soit

(13) E(xu ...,xn,yu

l'ensemble de tous les points (11) de K, pour lesquels (12) est satisfaite.

Evidemment

n (E(Xj,x„, J'i, }',„)) <^~')) '

Désignons par F(x\, Ç) la réunion de tous les ensembles (13) pour lesquels

xx et Max (|x2|, |v„|) > 0 ont des valeurs données. Désignons par c

des nombres positifs ne dépendant que de m, n et des nombres (10) donnés.

Si, par exemple, \xp\ ^ ç (p> 1), on a pour chaque Xj (2^]£n, j ^p) 2ç-f 1

possibilités; en outre, si pcl9 xn sont donnés et si (13) doit être non vide,

on a pour chaque yt (/'--1, m) cç, possibilités au plus. Donc l)

/.i (F(xuC))^ Cç"' + ""2 ^cp(x)

où x Max (|x*jj, O(C^1). On obtient enfin
oo

X n(F(xu 0) S X X
XI, Ç Ç 1 1^11 iç

oo

+ x X c?-2(<p(\Xl\))m
\xi\ 1 0 <ç < \xi I

oo

^ c X t"_1(<p(0)'" < + 00

t= 1

1) Pour 1 ^ x < A on peut compléter la définition de <p (.y) > 0 d'une manière arbitraire.
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Donc l'ensemble de tous les points (11) qui sont contenus dans une infinité
d'ensembles F (x1? Ç) est de mesure zéro.

Remarque. Si cp (x) est assez petite, on peut démontrer le théorème

suivant, plus précis que le théorème A:

Théorème B. Soit cp (x) une fonction positive et continue pour
x ^ A ^ 1, x(p (x) monotone, xcp (x)->0 pour x-> + oo, x(n~1)/m • cp (x)

monotone, et l'intégrale (5) soit convergente. Alors il existe un système (8)

propre tel que la matrice (1) admette l'approximation cp (x), mais n'admette

aucune approximation k cp (x) (0<k< 1).

Pour n 1, ce théorème est connu (voir [1], Satz 6) et sa démonstration

est, contrairement à celle du théorème A, assez facile (pour n= 1, on n'a

pas même besoin de la convergence de (5)). La démonstration pour n> 1

s'achève comme plus haut.

Remarquons que pour n ^ m les suppositions du théorème A entraînent
les suppositions du théorème B. Donc le théorème A donne des résultats

qui ne sont pas contenus dans le théorème B seulement dans le cas n<m.
Remarquons enfin que les théorèmes A, B ne donnent aucun résultat dans

le cas où les intégrales (5), (6) divergent et cp (x) =& o (x~n/m).
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