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ON ABSOLUTE SUMMABILITY FACTORS

Ronald Lee IRwiN 1) and Alexander PEYERIMHOFF

To the memory of J. Karamata

In this paper we will give some results on absolute summability factors,
i.e. on sequences {¢,} which transform—for given summability methods A
and B—every absolutely A-summable series Xa, into an absolutely B-summ-
able series Xa, ¢,.

Theorems of this type are known for the Cesaro methods ([1], [2], [7], [8]),
and we aim at proving corresponding theorems for matrix transforms in
general. Some of the ideas which have been used in the Cesaro case can
be employed in the general case and lead to Theorems 1 and 2 below (see
also [3]). If we specialize in these theorems 4 to C,and Bto C4, (0= f<a=1),
then Theorem 1 covers the case 0<f<a, but not f = «, and Theoiem 2
covers the case 0<f=<a, but not § = 0. We give a third theorem which
covers, when specialized as before, the case 0<f<«, but the conditions
imposed on 4 and B in this theorem appear to be more severe than in the
other two theorems.

Each of the following theorems requires that the elements in the rows
of A or B increase, and this leads for Cesaro methods to the restriction
a=1 or f=1. The question of an extension of the following theorems which
contains the results for Cesaro methods of all orders remains open (see

[3], [6D).

NOTATIONS

A matrix 4 = (a,,) (n,v=0,1,...) is called triangular if a,, = 0 for
v>n, and normal, if it is triangular and if a,,%0. We write 4 > 0 (4 §0)
if a,, 2 0 for v#n (a,,<0 for v#n). The inverse of a normal matrix 4 is
denoted by A" = (a',,), i.e. AA" = I, where I is the identity matrix. Given
a matrix 4 and a series 2a,, then Xa, is called absolutely 4-summable if

1) This work was supported in part by N.S.F. Grant GP 9026.
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o0

o = a;,v a, exists forn =0, 1, ..., and if X ]oc,,]<oo. We write Xa,e IA] if
v=0

2a, 1s absolutely 4-summable. A matrix A4 is called absolutely convergence
preserving if Xa, € |A| whenever Za, € |I|, and absolutely regular, if in addi-
tion Xa, = Yo, Necessary and sufficient conditions that A4 preserves
absolute convergence are (by a theorem of Knopp and Lorentz, [5])

n=pu
and for absolute regularity we have to add the conditions
(2) Y a, =1 (u=0,1,..).

n=p

If, for given matrices A and B, Za, € |B| holds whenever Xa, € |4|, then

we write |A]| EIBI.

Let A be normal, and let B be triangular. We write o, = ). a,, a,,
v=0

n n

n n v
Bo= > bne,a,= Y b,e > d,a,=> a, > b,a,, ¢ and observe
v=0 v=0 u=0

p=0 v=a

that the sequence {g,) has the property that Za, ¢, € |B| whenever Za, € |4| if

and only if the matrix ( ). b, a, . €,) 1s absolute convergence preserving, i.e. if
v

fi =
10

(3) Z I bnv a\:u 8vl = 0(1) ‘ (/’t_) OO)

n=p v
by (1). A sequence {g,} is a sequence of absolute summability factors from 4
to B if and only if (3) is satisfied. The following theorem gives necessary
conditions for factors of this type. The proof is very similar to the proof
of Theorem 1 in [3] and is omitted.

THEOREM. Let A be normal and absolutely convergence preserving, and
let B be triangular and absolutely regular. Then, if Xa,e, € |B| whenever
Xa, e ]AI, it follows that

(4) e, = >, bya,, forsome bounded sequence {b,},

bnn
(5) e, = 0(1).

nn
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If A and B are Cesaro matrices, then conditions (4) and (5) are sufficient
for (3), and in what follows we will show that this is also the case for more
general matrices 4 and B. It will be convenient to use the notation ¢, (4, b)
for the infinite series which appears in (4).

THEOREM 1. Let A be normal and absolutely regular, and let B be

0

a,,| <o
v=p

(u=0,1,..) and 0Zb,, T for vl (v=n). Then Za,c¢, (A4, b) e IBI whenever
Ip, e |A| if 1)

(6) Y laue (4, D)b,y, =01 (@-0), by,= Y b,.
v=p+1 v=u

Proof. We have to show that (3) holds, and we write ¢, = ¢, (4, b).
Let (for n=p)

Z nv v,u bnu Z a\:u &y — bnu 2 avug + Z (bnv bnu)a\:u‘g

7 v=n+1

=1 +II +1II.
Here

0
Z Ayp &y =
ve=p

and it follows that

@ o p
ausz prZa a;u:b#’
p=v p= v=p

Il =0(1) (u—0).

I M 8
g

Next
e} 0 0 0 v—1
Z IIIII é Z ’avu 8vl z (bnv—bnu) = z lavu 8v| Z bnu
n=u vV=u n=vy vV=u n=yu
(observe (2)), and finally
0 0 v—1
Y | < Y la,, &, [
n=pu v=pnp+1 n=u
which proves the theorem.
n n_
HIfap = , ZO bny ay, 0n = ap + ... + ap, then 6, = 3 bny ay, ie. (va) is the form of the
= V=

method defined by B which transforms a series into a sequence.
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Remarks. let A=C, (ie. a,, = 1=v=n, a,, = 96,,), B= C,,

A
then the assumptions of Theorem 1 are satisfied if =0, 0L, If

p=a and ¢, (4,b) = O (%) = 0(nf~%), then (6) is the condition

OO —a— —a 1
(7) AuAZ Z IA v—ul Ae-—u—llvﬂ A

B
v=p+1 v v—1

=0(1) (u—>o),

which is satisfied for f<a but not for f = .

THEOREM 2. Let A be normal and absolutely regular, and let B be trian-

gular and absolutely regular. Furthermore, assume that') A’ <0, a,>0,a,,T,
0<b,,t for v 1(v=n). Then Za, ¢, (4, b) € |B| whenever Xa, e |4| if

(8) g,(4,b) ), |(BA"),| =0(1) (n— o)

and
) > 1BA) 8, = 0()  (p—>o0), Gy = ), ay,.
n=pu v=u
Proof. We have to show that (3) holds, and we write ¢, = ¢, (4, b).
Let '

Doy Ay & = €,(BA )y + Y. apa,,(e,—¢,) =1 +1I.

v=p

e

v

Here i 7] = O(1) because of (8).

n=pu
We have
II = Z bnva;xt( Z bpapv— Z bpapu)
v=p p=v p=pn

n P oo} n
= Z bp( Z nvapvaVﬂ_apu(BA,)nu) + Z bp Z bnv avu(apv_apu)’

p=n v=u p=n+t1l vV=p
where

p p
Z bnv apv av,u = Z (bnv'—bnu) apv avu + bnp 5pp, é 0
v=U v=yu

1) It follows from 4’ < 0, an > 0 that A = 0 (see [4]).
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for p>u, and Y b,, a,, (a,,—a,,)<0. If lbn|§K> 0, then it follows that
vEa

n P
K_l ‘II| é _ Z (Z bnvapva\:u—_al’”(BA/)"”)
p=p v=p

n

- Z Z bnv Cl‘,,” (apv_apy) + 2bnu + 2 I(BA/)n,u[ Z apu

p=n+1v=ypu p=n

Y. buyay, (e, (4, 1) e, (4, 1) + 2b,, + 2a,,|(BA"),,| ,

=

and we have ) |II[ = 0(1) (u— o0) because of (9) (observe that ¢, (4, 1) = 1).
n=p
Remarks. Let A = C,, B= C;, then the assumptions of Theorem 2
nA®
(BA"),, = §,, that (8) holds if we assume that ¢, (4, b) = 0 (n’ ~%). Further-
more, (9) is true for >0, but not for f = 0.

are satisfied if 0<a, B< 1. It follows from (BA'),, = A5 "4~ (1= u<gn),

THEOREM 3. Let A be normal and absolutely regular, and let B be trian-

gular and absolutely regular. Furthermore, assume that A’ <0, a,>0,
0=b,,1 for v {(v=n), and that b,,=0,,a,, 0=0,,(a,,—a,)] for v 1
(v=n<p). Then Za, ¢, (4, b) € |B| whenever Za, € |A| if

(10) 2, 1, (4,0)(BA),,| =0(1) (- 0).

Proof. ‘We have to show that (3) holds, and we write ¢, = ¢, (4, b).
Let

Z bnva\:u & = gn(BA,)nu + Z bnv a\:u (gv_gn) =1 + I1.
v=U V=

=g

Here ) |I| = O(1) because of (10). We have

u

n—1 P o0 n
IT = Z bp Z bnv apva\:u - Z bp Z bnv a\,’u (apn-_apv) “
=u p=hn v=pu

p=g v

P
It follows as in the proof of Theorem 2 that )’ b, a,, av'u§0 for p>p. If

v=u
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we write ¢,,, = 0,, (d,,—a,,), then

n

Z bnv vu(apn“ pv) = Z (Cpnv_cpnu)anv vi + Cpnu5 nu 2 O’

V=p

and this leads to the estimate

-t |II| ( Z Z nv pv vu Z Z bnv vn(apn—apv)) + 2bnu

p=pnv=p p=nv=p

Z ny vu( (A 1) € (A7 1)) + 2bnu

which implies Z 11| = 0 (1).
n=pu

Remarks. 1. If A = B, then the assumptions of Theorem 3 on A4 and

B are satisfied if 4’ <0, a,>0, 0=a,, T for v1(v=n). In this case (10) is true
because of ¢, (4, b) = O (1).

2. If B = I, then the assumptions of Theorem 3 on A4 and B are satisfied
if 4’ <0, a,>0. In this case (10) reduces to the condition Y’ |a,, &, (4, b)| =
n=p
= 0 (1) (p— ).

3. If A = C,, B = C,, then the assumptions on 4 and B of Theorem 3
are satisfied for 0<«, f§<1. The condition

Oy (@pn —ay) LTOT V1 (0,0 = Al™" A5 [ AL ATTY)
reduces to the inequality
(m—v+p—D(A o n—A W =(n—v+a—1) (42 n—A%" 41,0+ 1))

(v<nZp), and it is sufficient to prove this inequality for f = 0, i.e. to
prove that

(11) A, S(m—v+a—DAS i+ —(n—v—1) 4%

p—n =
holds. A short calculation shows that for >0
Aa—l
(p—v) ((n—v+oc—1)(v+1) - (n—v—l)v—a:{:v——>
A p— (v+1)

=alp+v(p—n) +(n—v—1p,
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and that

Ap v—1 (p__n)' 1

A‘f,_f, (p——v——l)!(p—n—l—oc——l)...(p——v—#oc——l)'

Using these identities, (11) turns out to be

n < <<p+v(p—n>) +

N (n—v—-l)p>(p —n)!

o (p—=W! (p—n+a—1..(p—v+a—1)"

and this inequality is true if it holds for « = 1. But (11) is obviously true
for o = 1. |
If ¢, (4, b) = O(n’~%), then (10) is satisfied since (8) is satisfied.
Finally we will discuss the question on conditions which guarantee that
(8) or (10) is satisfied if ¢, (4, b) satisfies (5).

Lemma 1. Let C be normal, C' <0, c,>0.

D) If ) ¢, =1(20), then > c,, =1(=0).

n=y

(i) If Y ¢, =1(=0), then Y ¢, <1 (v=0).

n=v ‘ n=y

n

Proof. (i) It follows from §,,—¢,, ¢y = Y. ¢, ., (n=v) and by sum-
u=v+1
mation with respect to n (observe that all terms in the sum on the right

are negative) that

© 0 ©
— Cyy Z Coy = Z Cuv Z Cnu ’
H=v n=v+1 n=upu

and this proves (i).

=

(i) It follows from 6,, = ) ¢, c,, (v<n) that for k=n

nL=v

1\

k n k k
Z Z Cnu A Z Cpv Z ¢
u=v n=u

n=v p=vy

k
§: Couv »
u=v

and this proves (ii).
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LEMMA 2. Let A be normal, B be triangular, and assume that A’ § 0,
an>0a bnv - Gnv Any-

(i) If0<06,, 1 forv?t (v<n), then BA' <0.
(i) If 0<80,, | for v (v<n), then BA' =0.

Proof. This follows from

n

(BA,)nv = Z bnu a;’zv = Z (an—gnv) anp a;lzv + Gnv 6nv'
U=y

p=v

Let A and B satisfy the aésumptions of Theorem 2, and assume that
b,, = 0,,a,,, where 0,,1forv?1 (v<n). It follows from Lemma 1 that

nv>

> a,, =1, and it follows from Lemma 2 that B4’ < 0. We have
n=p

(12) Z (BA/)ny = Z Z bnv a\:u = Z a\:u Z bnv = 1’
n=pu n=p v=pn vV=yu n=v

and this implies that

z ? ’ bnn bnn
(13) Y [(BAY,| = 2(BA),, —1 =2"" —1=0/(").
n=u

ann ann

If ¢, (A, b) satisfies (5), then it follows from (13) that (8) is satisfied. If
bun/@uml, then it also follows that (10) holds.

Lemmas 1 and 2 can also be used to prove the following comparison
theorem.

THEOREM 4. Let A and B be normal and absolutely regular. Further-

more, assume that A' <0, a,>0, b,,=0,, a,,
(i) If0Z6,, 1 forv] (v=n), then B( S[A[.

(i) If 0<8,, | for v | (v<n), then |B|2|4|.

Proof. (i) It follows from Lemma 2 that BA' = C’ <0, which implies

that A = CB, C g 0. 1t follows from (12) that ) c,',u = 1, hence we have

[00]

from Lemma 1 the relation ) ¢,,<1.Butl = ) a,, = ) (CB),, =
=Uu n=u

n=4pn n
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bw Z ¢,,, and it would follow from Z Cy, <1 that Z by, Z

n=vy V=1V,

nMs

Z b,,, = 1, which proves that Z ¢,y = 1 for v=0. Consequently,

Y=V,

C is absolutely regular and, therefore, IB] [AI

(i) It follows from Lemma 2 and (12) that B4’ = C = 0and ¥ ¢,, = 1

n=pn

which proves that |B|2|4| since B = C4, where C is absolutely regular.

[1]
(2]
E)
(4]

[5]

[7]
(8]
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