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CARACTERISATION DE CERTAINES TOPOLOGIES
COMPACTES

E. R. LorcH et HING ToNG !

A la mémoire de J. Karamata

On suivra de prés les notations et la terminologie données par 'un de
nous dans [1]. Soit E un ensemble dont les points seront indiqués par
X, ¥, .... Soit T une topologie compacte sur E. Il sera entendu que la topo-
logie est séparée. On désigne par C, I’algébre de toutes les fonctions conti-
nues sur E et & valeurs réelles. Pour spécifier la topologie, nous parlerons
souvent de fonctions t-continues, d’ensembles t-ouverts, etc. On désigne
par I, I’algebre des fonctions réelles de Baire engendrées par C,. Soit main-
tenant 7 I’ensemble de toutes les topologies compactes 7’ (sur E bien
entendu) et telles que I, = I.. Autrement dit, 7' = {7': I, = I }. Etant
donnée une topologie t de T, toute autre topologie 7" de T sera appelée
cohérente; plus exactement, la paire (t, t’) sera une paire cohérente.

On introduit dans 7 une topologie, appelée métatopologie, de la maniére
suivante (pour les détails nous renvoyons le lecteur a [1]): soit te T et
soient fi, ..., f, des fonctions appartenant a C,. Alors, ’ensemble

U(t;fis-.ofy) = {tit'e Tetfy, ..., f,e C.}

définit un voisinage « typique » de t dans la métatopologie. En effet, on
obtient, en variant 'entier # et les fonctions fi, ..., f, de toutes les maniéres
possibles, une base de voisinages ouverts de t dans la métatopologie.

La métatopologie n’est pas discréte en général. Donc, sauf pour des
cas trés particuliers (par exemple, si E est un ensemble fini), il n’est pas vrai
que I’ensemble {t} de T est ouvert pour chaque 7. Tout de méme c’est un
fait qui découle tres facilement de théorémes classiques que la métatopologie
est discreéte au point t, donc que ’ensemble {t} est ouvert, dans le cas
suivant: supposons qu’il existe # fonctions t-continues, f;, ..., f,, qui séparent
les points de E (c’est-a-dire que f; (x) = f;(»), i = 1,, ..., n, est impossible
a moins que x = y). Soit 7" une topologie dans U (t;f,, ..., f,). Alors

1 Travail subventionné par la National Science Foundation, U.S.A.
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puisque fi, ..., f, € C,, la topologie faible engendrée par les f; est moins
fine que t'. D’autre part cette topologie est identique a t puisqu’elle est
séparée. Donc t<1t’, ce qui implique que 7 = 1’. Nous avons U (t;
f1s -0 fy) = {1} et donc {7} est ouvert.

Dans cette note nous allons démontrer une proposition réciproque a
celle ci-dessus. Nous démontrons que si la métatopologie sur 7 est discréte
au point 7, alors il existe n fonctions f;, ..., f, dans C, qui séparent les points
de E. Autrement dit, nous montrons que si 7 est une topologie compacte
sur E pour laquelle il existe des fonctions t-continues g, ..., g, telles que
I'unique topologie pour laquelle les g; sont continues est t, alors il existe
des tonctions t-continues fi, ..., f, qui séparent les points de E. Nous ver-
rons en effet qu’avec une simple adjonction, les fonctions gy, ..., g,, Séparent
les points de E.

Nous énongons ci-dessous trois propositions équivalentes. La plupart
des implications sont connues. C’est seulement 3)=-1) qui demandera notre
attention.

THEOREME: Soit t une topologie compacte sur E et soit T [’ensemble de
toutes les topologies compactes sur E ayant les mémes fonctions de Baire
réelles que t. Les trois propositions suivantes sont équivalentes :

1) 1l existe n fonctions réelles t-continues fy, ..., f, qui séparent les points
de E (c’est-a-dire, telles que f; (x) = {;(y), i = 1, ..., n implique x = y).

2) L’espace topologique (E, ) est homéomorphe a un sous-espace compact
de R".

3) La métatopologie sur T est discréte au point t.

Démonstration: 1)=-2). Supposons que f;, ... f, s€parent les points de
E. Soit ¢: E—R" I'application définie par @ (x) = (f; (x), ..., f;, (x)). Il est
facile de voir que @ est continue et bijective et que I'image de E par @,
c’est-a-dire @ (E), est un ensemble compact de R". Donc @ est un homéo-
morphisme.

2)=-3). Soit ¥ une application homéomorphe de E dans R", ¥: E-R".
Si (&4, ..., &,) est un point de R", soit p; la projection p;: R"—R définie par
p;i (&, ., &) =& Soitf; =p;° ¥, i =1, ..., n. Alors les fonctions fi, ..., f,
sont t-continues et séparent les points de E. Donc on a démontré 2)=-1).
La démonstration que 1)=-3) a été donnée dans un des paragraphes précé-
dant I’énoncé du théoréme.

Il reste & démontrer que 3)=-1). Soit donc la métatopologie sur 7 dis-
créte au point 7. Ceci veut dire que chaque base au point 7 de la métatopo-
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logie contient ’ensemble {t}. Il existe donc des fonctions f;, ..., f, qui sont
z-continues et telles que U (t;fi, ..., f;) = {t}. Supposons que les fonc-
tions f3, ..., f, ne séparent pas les points de E. Il existe donc deux points
x;, y1 €E, x; # yy, tels que f; (x;) = f; (1), i = 1, ..., n. Soit A Pensemble
de tous les points z € E tels que f; (x;) == f; (), i =1, ..., n. Nous avons
A = &1 (P (x,)) ol @ est I'application donnée par @ (x) = (11 (x), .o, [ (%))
Puisque @ est une application continue, A est un ensemble 7-fermé. Démon-
trons premiérement la

PROPOSITION: L ’ensemble A est un ensemble fini et la topologie T est
discréte en chaque point z € A.

Supposons que A soit infini. Puisque A est compact, il existe un point x*
qui est un point d’accumulation de A. Soit x, un autre point de A. Il existe
une fonction g: E—R, z-continue, telle que g (x*) =10, g(x,) = 1. Un
ensemble constitué des zéros d’une fonction continue sera appelé un zéro-
ensemble (zeroset). Il est & noter qu'un zéroensemble est un ensemble de
Baire; un ensemble fermé ne I’est pas en général. Il existe donc deux t-zéro-
ensembles A et Ay, pour lesquels x* € A*< A, x, € AgcAet Ay NnA* = 7 ;
de plus le point x* est un point d’accumulation de A*. On notera que A
est un t-zéroensemble et que l'intersection finie de zéroensembles est un
zéroensemble.

Nous construisons maintenant une succession de 7t-zéroensembles:
AT 2 A2 .. tels que x*e A, z A* et nous choisissons x;€ AJ—A, ],

~

[=1,2,... Soit B= n A} Il est clair que B est un 7-zéroensemble, donc
=1

un ensemble fermé de type G;. De plus, B contient chaque point d’accu-

mulation de I'ensemble {xi, x3,..}. Nous avons aussi x,€ A, A et

BnA,=g.

Consideérons l'ensemble F =E — (A,uB) comme sous-espace de
(E, 7). F est localement compact et peut étre compactifié selon la maniére
classique par I'adjonction d’un point x_. De plus, puisque B n’est pas un
ensemble ouvert, F n’est certainement pas compact et donc dans la compac-
tification Fu {x} le point x,, est un point d’accumulation. Nous construi-
sons maintenant une nouvelle topologie 7" sur E de la maniére suivante.
Considérons A, et B comme sous-espaces de (E, 7). Formons 1’union libre
des trois espaces Fu {x_}, A;, et B. Dans cette union libre, identifions les
points x, et x . Ceci sera I'espace (E, 7).

La topologie 7’ est compacte. De plus, la topologie ' est cohérente. Pour
s’en assurer, il suffit de montrer que chaque fonction g qui est t-continue

T ’Fneeionement mathém . t. XV. "
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est ou bien 7’-continue ou de la premicre classe de Baire pour 7’; etrécipro-
quement. La démonstration de ce fait s’appuie sur le théoréme de Tietze
qui permet I’extension continue & tout un espace d’une fonction continue
sur un sous-espace fermé; elle s’appuie aussi sur le fait que A, et B étant
des ensembles de type G; dans (E, 7) et aussi dans (E, '), ’ensemble F est
de type &, et donc peut €tre représenté comme une succession d’ensembles
fermés. Nous laissons au lecteur les détails de la démonstration de la
cohérence.

De plus, les fonctions fi, ..., f, sont t’-continues. Pour s’en convaincre, il
suffit d’examiner le comportement de ces fonctions dans le voisinage de x,.
Or P’ensemble {x: I i (x)—f; (x0)|<e} est un 7’-voisinage de Xx, puisque
I’ensemble complémentaire est un sous-ensemble de F qui est T-compact.
Ceci démontre donc que f; est t’-continue au point X,.

Finalement, les topologies 7 et 7’ ne sont pas les mémes. Car il existe
des t-voisinages de x, qui ne contiennent aucun des points de I’ensemble
{x{, X3, ...}. Mais dans la compactification de F, chaque voisinage de x,,
contient des points de cette suite. Notre hypothése faite au début de la
démonstration que I'ensemble A est infini est donc fausse. Ceci démontre
la premiere moitié¢ de la proposition.

Considérons un point x de A. Puisque A est un ensemble fini, il existe
un t-voisinage de x qui exclut tout autre point de A. En outre A est un
ensemble de type G; puisqu’il est un zéroensemble. Il s’ensuit que {x} est
un ensemble de type G5 pour la topologie . Maintenant supposons que {x}
ne soit pas t-ouvert. Si y € A, y # x, nous construisons une nouvelle topo-
logie v’ cohérente & 7 en « échangeant » les points x et y. Ceci veut dire
qu’'un t’-voisinage de x sera de la forme (U~{y})u {x} ol Uest un t-voi-
sinage de y; et réciproquement. Il est facile de voir que 7’ est cohérente
(puisque les ensembles {x} et {y} sont de type G; pour 7) et aussi que les
fonctions fi, ..., f, sont t’-continues. De plus t’ n’est pas identique a 7
puisque x est un point d’accumulation de 7 et puisque 7 est séparée. Ceci
contredit notre hypothése. 1l s’ensuit que 7 est discrete en tout point de A.
Ceci termine la démonstration de la proposition.

Scit @ la transformation de E en R" donnée auparavant. Soit A un
ensemble de la sorte envisagée dans la proposition. C’est-a-dire, A = @ *
(@ (x)) pour un x donné et A posséde au moins deux élémerts. Soit C la
réunion de tous les ensembles A, C = y A. Alors, puisque A est un ensemble
t-ouvert (selon la proposition), il en est de méme de C. Donc ’ensemble
D = E—C est t-fermé. Nous verrons dans la suite que D est un ensemble
de type G;, donc un t-zéroensemble.
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Notons premiérement que @' &(D) = D par définition. Puis, puisque D
est 1-fermé et que @ est continue, ® (D) est fermé dans ¢ (E). Puisque
@ (E) est un espace métrique, il existe des ensembles ouverts 0,9 (E),

i=1,2,...telsque®D)=n O, DoncD =& ' (¢(D)=P ' (n0O)=
i 1

=N ¢ ! (0)). Puisque @ ! (0,) est ouvert, D est de type G,.
1
Soit f une fonction t-continue & valeurs réelles telle que f'(x) = 0 pour

xeD, f(z)>0 pour ze C. On construira une fonction f,, t-continue de
la maniére suivante. Soit A = {z, ..., z,} un ensemble fini de la forme
A =0 ' (P (x)), xeE, et r>1. Supposons pour faciliter les notations que
f(z,) = min { f(z,), ..., f(z,)}. Définissons alors f, (z,) = (k/r) [ (z,),
k =1, ...,r. La fonction f;, est ainsi définie pour chaque A dans C. Pour x
dans D, posons f, (x) == 0. La fonction f; est t-continue. Ceci est €vident
si x € C puisque 7 est discréte au point x. Si x € D, la continuité découle
du fait que 0=/f,=f et de la continuité de f.

Considérons finalement les fonctions fo, f1, ..., f,- 11 est évident qu’elles
séparent les points de E puisque f, sépare les points de chaque A. Ceci
compléte la démonstration du théoréme.

Nous ajoutons quelques observations. Si la métatopologie est discrete
au point 1, il s’ensuit de théorémes classiques que si E n’est pas un ensemble
fini ou dénombrable, E a la puissance du continu. Si pour une topologie
compacte 7 et n fonctions t-continues f, ..., f, la seule topologie (cohérente
ou non) pour laquelle Ies f; sont continues est 7, alors évidemment (E, 1)
est homéomorphe a un ensemble compact de R”. Finalement, le théoréme
démontré ci-dessus est en rapport avec la structure du groupe & des équi-
valences de Baire appartenant aux topologies de 7" dans le cas des espaces
métriques. Dans [1] il a été introduit pour chaque t € 7" une topologie uni-
forme & dans le groupe ®. En s’appuyant sur la proposition 4.1 de [1]
nous avons le corollaire suivant: Pour que la topologie .® soit discréte, il faut
et il suffit que la métatopologie sur T soit discréte au point .

Le résultat de ce travail a été annoncé dans les Rendiconti de [’ Accademia
dei Lincei, le 31 juillet 1968.

[11 LorcH, E. R., On compact metric spaces and the group of Baire equivalences, Studia
Mathematica, T. XXXI (1968), 243-252.

(Recu le 1°v septembre 1968 )
E. R. Lorch, Columbia University.

Hing Tong, Fordham University, New York, N.Y.
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