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ECKENKRUMMUNG BELIEBIGER KOMPAKTER
EUKLIDISCHER POLYEDER UND CHARAKTERISTIK
VON EULER-POINCARE

H. HADWIGER

Jean Karamata zum Geddchnis

Es ist eine allgemein bekannte Tatsache, dass die Eulersche Charak-
teristik y (4) eines ausreichend ,,verniinftig berandeten Polyeders 4 des
n-dimensionalen euklidischen Raumes E” vermdge der einfachen Formel

@ T(4) = 2,x(A4)

mit der Eckenkrimmung (Totalkriimmung) 7'(4) von A4 in Beziehung tritt.
Hierbei bezeichnet Q, den (n—1)-dimensionalen Inhalt der euklidischen

Einheitssphire S'< E” (Oberfliche der Einheitskugel im £"), und die Ecken-
krimmung

(I1) T(A) = ) a(4;p)

ist die Summe der Aussenwinkel « = « (A4; p), die dem Polyeder A4 in den
Eckpunkten p zugeordnet sind. Wenn sich die Randfliche von A4, wie
bereits oben vermerkt, in allen Eckpunkten hinreichend normal verhilt,
so konnen die Aussenwinkel als vorzeichenbegabte (n—1)-dimensionale
sphérische Winkelgrdssen, die den Innenwinkeln polar zugeordnet sind,
so erkldrt werden, dass das polyedrische Analogon (I) zur bekannten
Gauss-Bonnetschen Formel giiltig ist. In der vorliegenden Fachliteratur
sind allerdings explizite Ausfiihrungen vornehmlich im Falle n = 3 vor-
handen; vgl. hierzu [1], insb. S. 90—91.

Die in den ,verniinftigen** Féllen mogliche elementargeometrische
Erkldarung dienlicher Polarwinkel versagt, wenn beliebige kompakte polye-
drische Punktmengen A zugelassen werden. Hier féllt einmal der Begriff
der Randfliche im herkommlichen Sinne im allgemeinen weg und es
konnen singuldre Eckpunkte auftreten, wo polyedrische Teilsegmente
von A verschiedenster Dimension aneinanderstossen.

Das Ziel der vorliegenden Note ist es nun, eine Definition der Polar-
winkel a = o (4, p) fiir die Eckpunkte p beliebiger kompakter Polyeder A4
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so zu geben, dass in den normalen Fillen die bis anhin betrachteten Aussen-
winkel erneut geliefert werden und dass im vorgesehenen allgemeinen
Geltungsrahmen das Bestehen der Formel (I) gewihrleistet ist.

Es ist selbstverstidndlich, dass zur Erklidrung der Polarwinkel o (A4, p)
lediglich die infinitesimale Nachbarschaft des Polyeders A im Eckpunkt p
herangezogen wird. Mit der so erreichten Verifikation von (I) ist damit der
Nachweis erbracht, dass die Charakteristik y (4) eines beliebigen kom-
pakten Polyeders 4 durch das lokale Verhalten in den Umgebungen ihrer
Eckpunkte allein eindeutig bestimmt ist.

Unsere Ausfiihrungen stiitzen sich darauf, dass die Eulersche Charak-
teristik fiir die kompakten Punktmengen des ,,Konvexrings“ des m-dimen-
sionalen euklidischen und sphirischen Raumes auf elementare Weise
begriindbar ist, und dass auch alle hier einschligigen Eigenschaften im

nidmlichen Rahmen nachgewiesen werden konnen. Vgl. hierzu [2], insb.
S. 102—105.

I. In diesem ersten Abschnitt geben wir eine Definition des Polar-
winkels « = « (4; p) in einem beliebigen Punkt p € E” des n-dimensionalen
euklidischen Raumes E", n>1, beziiglich einer kompakten polyedrischen
Punktmenge A cE”". Es sei hier vermerkt, dass A4 definitionsgemiss die
Vereinigungsmenge endlich vieler kompakter und konvexer Punktmengen
ist.

Es sei ze E" ein fest gewdhlter Ursprung. Punkte im Raum und ihre
Ortvektoren beziiglich z sollen auf die ndmliche Weise bezeichnet werden.
Ferner bedeute S<FE” die (n— 1)-dimensionale euklidische Einheitssphére
um den Ursprung z und Q, bezeichne ihren (#—1)-dimensionalen Inhalt.
Nachfolgend finden Einheitsvektoren u, ve S Verwendung, wobei uv ihr
Skalarprodukt anzeigen soll.

Ist p € E" ein beliebig gewihlter Punkt und p, 0<p < o0, eine positive
relle Zahl, so se1 dem Punkt p die der Richtung u assoziierte Hemisphéire

1.1 H,(p,u) = {x€E"|x =p+pv, uv>0}
zugeordnet. Der Polarwinkel « in p beziiglich 4 wird nun durch den Ansatz

1.2 a(A;p) = Qx(pn A) — lim> [y [H,(p,u) " A] du

p—0
gegeben, wobei sich die Integration tliber alle Raumrichtungen u erstrecken
soll; du bezeichnet die Richtungsdichte, also das (n—1)-dimensionale
Fldachendifferential auf S. Im Falle n» = 1 ist die dem Entartungsfall ada-
quate naheliegende Umdeutung vorzukehren.
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Im Hinblick auf die additive Eigenschaft der Eulerschen Charakteristik,
wonach fiir zwei Mengen U und V des euklidischen oder sphéirischen
Konvexrings

1.3 L(U) +X(V) =X (UUV) +X(UAV)

gilt, resultiert nach 1.2 unmittelbar das fiir zwei beliebige Polyeder 4, B E"
gliltige Additionstheorem

1.4 a(A;p) + a(B;p) = a(AUB;p) + a(ANn B;p).

2. Nachfolgend stellen wir fest, dass der mit Ansatz 1.2 erkldrte Polar-
winkel o fast immer verschwindet und lediglich fiit Eckpunkte von A4 von
Null verschieden ausfallen kann. Um das Verschwinden des Polarwinkels
fir Nichteckpunkte nachweisen zu konnen, muss zundchst genauer fest-
gelegt werden, was unter einem Eckpunkt einer beliebigen kompakten
polyederischen Punktmenge zu verstehen ist. Ein Punkt p € 4 soll Eckpunkt
von A heissen, wenn die folgende Sachlage besteht:

Ist A = UP; irgend eine Darstellung von 4 als Vereinigungsmenge
endlich vieler kompakter und konvexer Punktmengen und ist D = n Q;
der Durchschnitt aller P;, die p enthalten (sie sind mit Q; bezeichnet), so
ist p ein extremer Randpunkt (Ecke) der konvexen nichtleeren Menge D.
Vgl. zu diesem Begriff [3], insb. S. 15.

Es bezeichne jetzt A,, A,, A;, A, die Menge der Eckpunkte, der Rand-
punkte, der inneren Punkte, der dusseren Punkte von 4. Wir zeigen, dass
die Aussage

2.1 pgA, = a(4;p) =0

richtig ist. In der Tat: Zunéchst ist aus 1.2 direkt ablesbar, dass sowohl
fir pe A, als auch fiir p e 4; sicher o (4;p) = 0 ist. Es sei nun pe 4,,
aber p¢ A,. Nach der Eckpunktserklirung existiert eine Darstellung
A = v P; derart, dass p nicht extremer Randpunkt von D = n Q; i1st.
Es gibt dann zwei Punkte p,, p; € D, p, # p, so, dass p = (py+p,)/2 ist.
Es sei nun p>0 so klein gewihlt, dass die Abstandsbedingung d(p, P,)> p
fir alle P;, die p nicht enthalten, erfillt ist und dass weiter noch
| po—p | = | p1—p |>p ausfilit.

Abgesehen von eventuellen Richtungsmengen vom Masse Null gilt dann
x [H,(p, u) 0 A] = 1, weil H, (p, u) n A fast immer die Vereinigungsmenge
endlich vieler abgeschlossener und sphirischkonvexer Punktmengen mit

nichtleerem gemeinsamen Durchschnitt ist. Aus 1.2 wird nun o (4; p) = 0
ablesbar.
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Weiterhin ist die folgende Feststellung wichtig: Ist 4 ein kompaktes
und konvexes m-dimensionales Polytop, 0<(m<(n, und ist p € 4 ein Eck-
punkt von A4, so gilt

2.2 a(4;p) = «®(4;p),

wo nun o der dem Innenwinkel von A bei p polar zugeordnete Aussenwinkel
(Normalensektor) ist; vgl. hieriiber [3], S. 14. Dies ergibt sich miihelos
aus der Bemerkung, dass fiir ausreichend kleine p>0 die Beziehung
x [H,(p,u) n A] = 0 bzw. = 1 gilt, wenn u dem offenen Kern des Stiitz-
richtungskegels von A4 in p bzw. der zu ihr komplementéiren abgeschlossenen
Richtungsmenge angehort.

3. Nun kénnen wir die Totalkriimmung 7 (4) des Polyeders durch
3.1 T(A) = > a(A4;p)

definieren, wobei sich die Summation formal {iber simtliche Punkte p € E”
erstreckt. Mit Riickblick auf 2.1 gewahrt man, dass sich diese lediglich
tiber die Eckpunktsmenge A, von A de facto erstreckt. Wie aus der
Eckpunktserkldrung leicht zu entnehmen ist, ist aber A, eine endliche
Menge, sodass sich 3.1 letzten Endes auf eine endliche Summe von Polar-
winkeln reduziert. .

Mit 1.4 schliesst man jetzt auf die Giiltigkeit der additiven Beziehung

3.2 T(A) +T(B) = T(AuB) + T(An B).
Weiter folgt aus 2.2 unmittelbar

3.3 T(P) =Q,; P#*¢, Pkonvex,
und schliesslich sei die triviale Feststellung

3.4 T(@) =0

angefligt. Gerade aber diese drei Eigenschaften 3.2 bis 3.4 kennzeichnen
im wesentlichen (bis auf den Normierungsfaktor) die Charakteristik von
Euler-Poincaré. Vgl. hiertiber [2], S. 103 ff.

Zusammengefasst resultiert jetzt

3.5 T(4) = 0,7(4),

wodurch die Giiltigkeit des polyedrischen Analogons (I) zur Gauss-Bonnet-
schen Formel fiir beliebige kompakte Polyeder des E" nachgewiesen ist.
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