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y = —vuv®+1)
z =W’ —1)
t = v +u’)

Comme u est défini par son cube, il a, pour un point donné, une valeur
unique: cette représentation rationnelle biunivoque ne peut cependant pas
étre modifiée en une représentation birationnelle, car une surface du qua-
triéme ordre sans singularité a tous ses genres égaux a 1. Nous obtenons
ainsi un contre-exemple au théoréme classique de Castelnuovo relatif aux
surfaces rationnelles.

Les variétés hermitiennes fournissent des exemples en toute dimension
(exception faite des courbes) de variétés admettant des représentations

rationnelles biunivoques, mais non birationnelles, avec des genres non
bornés.

IV. LA GEOMETRIE INFINITESIMALE

Nous avons rencontré, en géométrie sur un corps de caractéristique
trois, une quartique dont tous les points sont inflexionnels. C’est un exemple
de courbe dont tous les points sont singuliers du point de vue tangentiel.
Le fait, que nous avons rencontré également, que I’enveloppe des tangentes
a une courbe n’est pas la courbe elle-méme, montre, Iui aussi, la nécessité
de préciser les fondements de la géométrie infinitésimale.

a) 11 faut d’abord donner une signification claire aux notions de voisi-
nages d’un point sur une courbe (plus généralement sur une variété). C’est
une question de nature topologique, et tant que ’on considére les points
d’une courbe a coordonnées prises dans un corps fini, ils forment un en-
semble discret qui n’est naturellement muni que de la topologie discréte.
Mais, deés que I’on effectue des extensions infinies du corps de base, c’est-a-
dire dés que l'on associe a une courbe la connaissance de son équation,
on peut associer a chaque point des représentations paramétriques locales,
et définir des voisinages de tous ordres.

Soit @ une coordonnée quelconque d’un point. On la remplace par la
série formelle

X =a4at+..+al"+ ..

qui admet pour spécialisation a, lorsque ¢ = 0. Les coefficients successifs
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de la série seront déterminés par un processus récurrent, qui est justifié
par une topologie trés simple dont on munit ’anneau des séries formelles.
On sait que 'on appelle ordre w d’une série formelle le numéro du premier
coefficient non nul. Cet entier associé a la série posséde, vis-a-vis des opé-
rations sur les séries, des propriétés valuatives trés simples, de sorte que
Pon définit un systéme dénombrable de voisinages de zéro, en appelant
n-€me voisinage de zéro I’ensemble V, des séries formelles d’ordres

w=>=>n+1
Ces voisinages sont emboités, et transportés par translation dans tout
I’espace vectoriel des séries formelles. Dans la topologie ainsi définie, la
limite de ¢” pour n augmentant indéfiniment est zéro, et on dispose ainsi
d’une technique tout a fait analogue a celle classique des développements

limités, pour écrire que le premier membre d’une équation appartient a
un voisinage de zéro donné a priori.

b) Voici, a titre d’exemple 1’étude du contact, en géométrie sur un corps
de caractéristique deux, de la cubique

y2z = x3

avec une conique. La cubique admet le point R (0, 0, 1) comme point singu-
lier et le point 7 (0, 1, 0) comme point d’inflexion. La conique sera définie
paramétriquement :

X = Xo + X1t + x,t°

y = Yo + yit + y,t?
z = zg + 24t + z,t°

le point (x, ¥, zo) €étant un point courant de la cubique. Les coefficients
des puissances successives de ¢ dans I’équation d’intersection sont

YoZo + Xo
Yozy + Xoxq

y(z)Zz + )’%Zo + x(2)x2 + x%xo
yizi + X3

V3zo + yiz, + X3Xo + X1x,
V3Zy + X3%,

2 3
Y2z, + X3
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L’équation

Y2z +x5x =0
est I’équation de la tangente a la cubique au point courant: cette tangente
passe par le point fixe I ou elle recoupe la cubique. On voit ainsi que les
coniques qui ont, au point considéré, un contact quadriponctuel avec la
cubique, ont pour nucléon I:

xl = Zl = 0
La conique osculatrice a pour équation
‘ 2 2 2
x2Xgzo + V225 + 22y + xzx5 = 0

elle admet avec la cubique un contact 6-ponctuel.
En géométrie sur un corps de caractéristique deux, la cubique a point de
rebroussement admet tous ses points simples comme points sextactiques.

c¢) Jai défini 1) un procédé de transformation des équations, que j’ai
appelé le « perfectionnement », et qui a ’avantage de présenter I’étude d’une
variété algébrique sous une forme tout a fait analogue a I’étude d’une fonc-
tion polyndme. Voici, en nous limitant a la géométrie affine plane, en quoi
il consiste:

Considérons un polyndome a deux variables f (x, y), a coefficients dans
un corps K parfait, de caractéristique p. Lorsqu’il est exprimé au moyen de
ses monomes

f(x,y) = ZMkh = Zakh xky*
I’homomorphisme fondamental fournit sa puissance p-€éme
F=f =QM?=)>)YM? = >Yalxr*yr
sous forme d’un polyndme par rapport a
¢ = xP n o=y’

a coefficients dans K. La réciproque est évidente puisque dans K parfait
les coeflicients ont une racine p-éme. Cette propriété s’étend sans difficulté
aux fractions rationnelles.

Revenons alors au polyndome

f(xa y) = Zakhxkyh

1} Lgc Gauthier_: Géométrie inﬁnitésimale des courbes algébriques planes ou gauches sur un corps de
caractéristique p, Séminaire P. Dubreil et Ch. Pisot, décembre 1955, exposé 7 (Faculté des Sciences de Paris).
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et modifions les exposants modulo p, par exemple en choisissant comme
systéeme de représentants les entiers 0, 1, ..., p — 1:

k =pq +a

h =pq" +B

cecl nous permet de mettre f sous la forme

FG,y) =3 (X awdin")x*yP = 3 A, px*y*
B 4,9
c’est-a-dire sous la forme d’un polyndme a exposants pris dans les restes
modulo p, les coefficients étant des polyndmes en ¢ et 5.
Cette propriété s’é¢tend immédiatement aux fractions rationnelles

qui peuvent €tre écrites sous forme de polyndmes a exposants pris dans les
restes modulo p, les coefficients étant rationnels en ¢ et #.

Lorsque le choix des représentants pris comme exposants est précisé,
la représentation est unique et il en résulte qu'une condition nécessaire et
suffisante pour qu’une expression ait sa différentielle identiquement nulle est
qu’elle appartienne au sous-corps des puissances p-émes.

Pour cette raison, nous désignerons désormais les puissances p-émes
sous le nom de quasi-constantes.

Considérons alors, maintenant, une quantité z, algébrique sur le corps K,
et son polyndme minimal f(z). Lorsqu’on écrit

Pl = A 2P L+ A,

ou les A4; sont des polyndmes en { = z?, le premier coefficient non nul 4,
ne peut étre le dernier car

ffm=20
est contradictoire avec le fait que f est minimal. En dérivant p —2 fois
Zk-l fp—l
on obtient
fg = — Az + Apsy

ol g est un polyndme de I’idéal engendré par fet f".
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L’équation
f(z) =0

entraine que z est rationnel en (.
Cette propriété de cloture est importante car elle montre que toute
- courbe

F(x,y) =0
peut, en un point ou Fy n’est pas nul, étre mise sous forme résolue

y = P(x;&,n)

dans laquelle le second membre est un polyndme de degré p-1 au plus en x,
a coefficients quasi-constants.

Cette propriété s’étend d’ailleurs aux variétés de toutes dimensions,
et aux homomorphismes

x—> & =x1

(g=p") engendrés par 'homomorphisme fondamental.

d) Voici un exemple simple d’application de la méthode de transforma-
tion précédente:

Sur un corps de caractéristique trois I’équation affine d’une courbe peut
€tre mise sous la forme

y = Ax* + Bx + C

ou 4, B, C sont des quasi constantes: Si 4 est identiquement nulle, la courbe
a tous ses points simples comme points d’inflexion. Si A n’est pas identique-

ment nulle, on obtient les points d’inflexion en coupant la courbe proposée
par

A =0

et comme A4 est un cube, les points obtenus ont chacun une multiplicité
d’intersection multiple de 3 1).

C’est ainsi que la cubique

o 1) Dans Pétude des cubiques, A est le cube d’une forme linéaire. La classification projective se présente
ainsi: Si 4 est identiquement nulle, la cubique est totalement inflexionnelle (cf. exemple qui suit).

) Si A = O est une drgite sécante ou tangente a la cubique, contenant éventuellement un point double,
il y a trois, un ou zéro point d’inflexion (cf. exemple du §e).

. Le cas ou il y a un seul point d’inflexion, de multiplicité 9, correspond a I’annulation de I’invariant de
asse.
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peut, sauf & l'origine qui est un point singulier, étre écrite

Sy =1
y est une quasi constante: les tangentes a la courbe sont les droites
Yy =JXo
et I’intersection
(x=x0)° =0 .

montre bien que tous les points simples sont inflexionnels.
En géométrie projective, la quartique qui a trois rebroussements, a pour
€quation

x*y? + 3?22 + z2%x* = 0
en faisant z = 1 et en multipliant par xy, on obtient ’équation « perfec-
tionnée »:
nx + &y +<n =0

qui montre que (pour p = 3 encore), cette courbe est, elle aussi, totalement
inflexionnelle.

e) En géométrie sur un corps de caractéristique trois, les cubiques a
point de rebroussement ne forment pas une seule famille projective: nous

venons de montrer que la courbe
J?Z == x3

est totalement inflexionnelle. Considérons ensuite la cubique
4+ xPy +x =0
qui admet un point singulier unique a Iorigine
4 3

(y—x)* =x* —x

Pour former I’équation « perfectionnée », élevons les deux membres au
carré

(y—x2)3(y—x?) = x* + x7 +x°
c’est-a-dire

m—E)y =nx* + &x + &
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Les points d’inflexion sont obtenus en annulant le terme du second degré
n =70

mais nous avons déja exclu l’origine comme point singulier.

La cubique considérée n’admet aucun point d’inflexion véritable. En
revanche elle admet un point de rebroussement d’une nature plus subtile que
ceux de la géométrie classique : il ne vérifie pas le théoréme de Puiseux.

Mais je ne veux pas, dans ce travail qui vise seulement & présenter
quelques aspects de la géométrie sur un corps de caractéristique p, entrer
dans I’étude, d’ailleurs délicate, des singularités des courbes et variétés
algébriques.

f) Sans donner non plus de développement au sujet d’une étude dont
je me suis occupé récemment, je voudrais cependant signaler que la géomé-
trie infinitésimale en caractéristique p, dispose actuellement de moyens suffi-
sants pour qu’on puisse analyser complétement la structure d’une variété
en un point, et lui associer un repére projectif mobile intrinséquement défini.
Je renverrai seulement, sur ce sujet, & deux publications en cours, ’'une a
Bologne (Luc Gauthier: Adaptation d’une méthode de Bompiani a la géomé-
trie infinitésimale sur les corps de Galois, Colloque de géométrie différen-
tielle, fin septembre 1967), I’autre dans le volume jubilaire dédié & M. Lucien

Godeaux (Luc Gauthier: Géométrie projective infinitésimale sur les corps
de Galois).

V. ESSAl DE GFOMETRIE METRIQUE

Lorsqu’on dispose d’une géométrie projective, et par conséquent, en
faisant choix d’un hyperplan a I’infini, d’une géométrie affine, il vient natu-
rellement 4 I'idée d’introduire une forme quadratique définie positive, a
laquelle on associera une distance, pour fabriquer une géométrie métrique.

Malheureusement, dans les corps finis I’absence de relation d’ordre per-
mettant de définir le qualificatif « positif » détruit cet espoir.

Cependant, dans I'intention de donner des applications en astronomie,
a Iétude des amas d’étoiles, P. Kustaanheimo 1) et G. Jdrnefelt 2), ont
montré que pour des valeurs particuliéres, (mais non bornées) de la carac-
téristique p, il est possible d’extraire de I’espace affine construit sur le corps

1) Kustaanheimo: One the fundamental prime of a finite world. Annales Academiae scientiarum fennicae,
1952.

2) Jarnefelt: Reflections on a finite approximation to euclidean geometry... Ibidem 1951.
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