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cing: les six points d’une telle droite projective forment trois couples deux a
deux en division harmonique.

En effet, en choisissant trois points quelconques de I’ensemble comme
repére (o0, 0, 1) les autres ont pour coordonnées 2, — I, — 2: les deux
couples (oo, 0) (1, — 1) et les deux couples (oo, 0) (2, — 2) sont évidemment
harmoniques. Et le conjugué de 2 par rapport (— 1, 1) est

nous ne nous appesantirons pas sur les propriétés de commutation liées a
cette figure.

II. PROPRIETES HERMITIENNES

Nous avons rencontré dans I’étude des formes quadratiques en carac-
téristique deux, 'identité

x* +y? = (x+y)*

cette propriété s’étend a toute caractéristique finie, sous la forme
XP 4+ y? = (x+y)°

plus généralement
Xt 4yt = (x+y)*

oll ¢ = p* est une puissance de p: liée au « petit » théoréme de Fermat,
elle tient a la divisibilité par p des coefficients bindémiaux. Elle montre que
dans un corps de caractéristique p, ’opération

x — x?

est un automorphisme, qui engendre un groupe.
De méme que 'automorphisme du corps complexe

z =X+iy—>zZ =x—1y

avait permis a Hermite de définir les formes, puis la géométrie qui porte
son nom, de méme, il est possible de définir, en caractéristique p, les formes
sesquilinéaires.

Considérons un espace vectoriel, sur un corps de caractéristique p, et

une forme f(x, y) qui & un couple de vecteurs X, Y associe un nombre du
corps de base, avec les propriétés suivantes:
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a) la forme est linéaire par rapport a X:
fX,Y) = 2f(X,Y)
SX'+X",Y) =f(X",Y)+f(X", Y)
b) la forme est semilinéaire par rapport a Y:
f(X,2.Y) = 21f(X,Y)
X, Y +Y") =f(X,Y") +f(X,Y")

Il est clair que lorsqu’on passe de I’espace vectoriel a 1’espace projectif
par la traditionnelle relation d’homogénéité, une telle forme, dite sesquili-
néaire, possede, pour le couple de points correspondants, les propriétés
d’une fonction caractéristique. En désignant toujours par X, Y les points
correspondant aux deux vecteurs de mémes noms, la relation

f(X,Y) =0

est une propriété géométrique de ’espace projectif, que nous appellerons
une sesquipolarité.

Pour en montrer briévement les propriétés, je supposerai que l’espace
vectoriel étant a trois dimensions, nous traitons de géométrie projective
plane.

Lorsque le point ¥ = A4 est donné, le lieu des points X qui lui corres-
pondent

f(X,4) =0

est une droite que nous appellerons la polaire de 4. En faisant décrire & Y
une droite

= A + 1B
la polaire
f(X,4) +1f(X,B) =0

décrit un faisceau linéaire de droites. Le birapport » de quatre points alignés
est celui des ¢, le birapport des polaires est celui des 7. Comme l'expression
du birapport est rationnelle, et que I’élévation a la puissance g est un homo-
morphisme, le birapport des quatre polaires est r9.

De méme lorsque le point X = A4 est donné, le lieu des points Y qui lui
correspondent a pour équation

f(4,Y) = 0.
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Sous réserve d’étendre éventuellement le corps de base (comme on le fait
en géométrie réelle lorsqu’on introduit des éléments imaginaires conjugues),
le premier membre est la puissance g-€éme d’une forme linéaire: le lieu
est une droite (multiple) que nous appellerons la semi-polaire de A. En
faisant décrire a X une droite

la semi-polaire
f(4,Y)+1f(B,Y) =0

décrit un faisceau linéaire de droites, et en utilisant comme plus haut I’homo-
morphisme fondamental, on voit que le birapport de quatre semi-polaires
est la racine g-¢éme du birapport r des quatre points correspondants.

Pour alléger cet exposé, nous nous limiterons au cas ou la correspon-
dance entre un point et sa polaire, est biunivoque. Nous voyons ainsi com-
ment la notion de sesquipolarité généralise la notion classique de transfor-
mation par polaires réciproques, associée aux formes bilinéaires. Cette
théorie classique est immédiatement liée a celle des formes quadratiques, et
il s’introduit ici toute une série de courbes (et de variétés dans les espaces
projectifs de dimension quelconque), lieu des points qui appartiennent a
leur polaire, et par conséquent aussi a leur semi-polaire:

X, X) =0

Ce sont ces courbes et variétés que, en accord avec M. Beniamino Segre,
nous nommerons variétés hermitiennes ).

Le dédoublement de la polarit¢ pose cependant la question de la
recherche des couples point-droite pour lesquels il y a réciprocité, c’est-a-
dire des points pour lesquels la polaire est en méme temps la semi-polaire.
Dans le cas régulier, auquel nous nous sommes limités, on obtient une confi-
guration trés simple: les éléments pour lesquels il y a réciprocité sont les points
et les droites d’un plan projectif sous-jacent au plan donné dans lequel les
coordonnées sont prises dans le corps a q* éléments.

Ce résultat est important car, de méme qu’en géométrie classique des
formes quadratiques, la recherche d’un repére conjugué est équivalente
a la décomposition en carrés de Gauss, de méme, ici, I'obtention d’un repére

1) Cf. L. Gauthier: Géomeétrie hermitienne généralisée. Bulletin Académie Royale de Belgique 1966,
p. 421. Dans ce mémoire, ces variétés étaient désignées, pour une autre raison, sous le nom de variétés de
Fermat. Cf. B. Segre: Hermitian geometries, with special regard to the finite case. Actas Coloquio Internacional
Geometria Algebraica Madrid 1965.
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conjugué (avec réciprocité) permet de définir une forme réduite, de Fermat :
xq+1 + yq+1 + Zq+1 =0

Pour donner un exemple simple d’étude de courbe hermitienne, prenons
le cas ¢ = p = 3. La quartique Q

x*+y*+ 2zt =0

est coupée par toutes les droites du plan en des points formant des divisions
symétriques, comme on le voit aprés avoir remarqué que

(xo +2x)* = x*y + Axox, + A3 xox; + A4 x7

ne contient pas de terme en A2. Pour cette raison, nous dirons que la quar-
tique Q est totalement symétrique.

En particulier, st le point (x,, yo, zo) appartient a Q, la tangente en ce
point, définie, suivant I’habitude classique des géomeétres algébristes,
comme la droite exceptionnelle, pour laquelle 4 = 0 est racine multiple
de I’équation d’intersection, a pour équation:

o X +y0Y+20Z =0

le premier membre est précisément la forme sesquilinéaire associée a I’équa-
tion de Q, et la tangente est la polaire du point de contact.

Cette remarque associée aux propriétés d’alignement montre que quatre
points alignés sur Q ont des tangentes concourantes suivant un faisceau symé-
trique. Ces quatre tangentes recoupent d’ailleurs Q en quatre points alignés.

D’autre part, la racine A = 0 est dans ce cas une racine au moins triple,
le contact de la tangente avec la courbe est au moins triponctuel, et la courbe
Q est totalement inflexionnelle c’est-a-dire que tous ses points sont d’in-
flexion.

Les points pour lesquels il y a réciprocité polaire sont ceux dont les
coordonnées sont des entiers de Gauss: a + bi (ou a, b sont des restes
modulo 3 et i* = — 1). Il y a 91 tels points dont 28 sont sur la courbe O,
la tangente ayant alors un contact quadriponctuel, et il y en a 63 qui n’appar-
tiennent pas a Q. Une étude approfondie de cette question et des fonctions
modulaires en caractéristique trois ') rapproche ces deux nombres de la
détermination des 28 bitangentes et des 63 familles de coniques quadritan-
gentes, donnée par F. Klein dans son étude de la quartique canonique en
géométrie complexe.

1) Cf. Luc Gauthier: L’invariant modulaire dans la géométrie sur un corps de caractéristique trois. Journal
de mathématiques pures et appliquées 1957, p. 117.
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La détermination de la tangente courante & la quartique totalement
symétrique Q, associée a I’homomorphisme d’élévation au cube, montre
que 1’équation tangentielle de Q est

ur 0t +wt =0

cette courbe est donc autoduale.

D’un point P quelconque du plan on méne quatre tangentes a Q, for-
mant un faisceau symétrique: leurs contacts sont alignés sur la semipolaire
de P. Lorsque P est sur la quartique Q, sa semipolaire passe par P et est
tangente & Q en un point P’: le faisceau est alors formé de PP’ triple et de la
tangente en P simple.

Comme la quartique Q ne comporte aucune singularité ponctuelle, elle
est de genre 3. En géométrie projective complexe les quartiques de genre 3
sont de classe 12. Nous rencontrons ici, pour la seconde fois, le fait qu’en
géométrie sur un corps de caractéristique p les propriétés tangentielles sont
profondément différentes de celles de la géométrie complexe classique.
Dans la théorie des coniques, pour p = 2 nous avons trouvé que ’enveloppe
des tangentes n’est pas du tout la conique elle-mé&me, mais le nucléon de
la conique, qui est de classe 1. Dans la présente étude, en caractéris-
tique p = 3, la quartique Q est bien P'enveloppe de ses tangentes, mais le
point caractéristique d’une tangente:

X =u Y = 93 4 w3

Il

n’est pas le point de contact, puisque

u = xp v = yg w = z
C’est le point déduit du point de contact par ’homomorphisme x — x°:
c’est le tangentiel du point de contact.
Nous verrons plus loin comment peut €tre élaborée non seulement la
géométrie tangentielle, mais toute la géométrie infinitésimale.

III. QUELQUES QUESTIONS DE GEOMETRIE ALGEBRIQUE

Pour rester fidele au but que je me suis proposé, je me bornerai ici
indiquer quelques théorémes classiques de la géométrie complexe qui perdent
leur validité¢ en géométrie sur un corps de caractéristique p.

Nous avons montré, comme conséquence de 'homomorphisme fonda-
mental, qu’il n’y a pas, en géométrie sur un corps de caractéristique deux,
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