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LA GÉOMÉTRIE SUR LES CORPS DE CARACTÉRISTIQUE
NON NULLE

par Luc Gauthier

à la mémoire de Jean Karamata

Lorsque Descartes eut l'idée d'associer à une figure géométrique un
repère de coordonnées de façon à substituer au raisonnement basé sur
l'intuition de l'espace, un calcul effectué sur les équations correspondantes,
il n'avait, je crois, pas d'autre but que de faciliter le progrès de la connaissance

géométrique.
Cependant, la géométrie analytique ainsi créée comportait une quantité

notable d'équations algébriques, et les mathématiciens sentirent bientôt
la nécessité d'élargir les conceptions géométriques traditionnelles pour
interpréter les solutions complexes des équations.

Pendant longtemps, cette modification apportée aux notions géométriques

n'a été conçue que comme une généralisation inéluctable de la
géométrie des Grecs, maintenue enracinée dans ses origines topographiques.
C'est probablement la raison pour laquelle on a si souvent mal compris les

efforts d'un von Staudt pour introduire les éléments imaginaires en géométrie,

indépendamment de la notion de coordonnées: il ne lui aurait pas
suffi de constater par un changement de repère le caractère invariant des

notions nouvellement introduites. C'est ce que fit plus tard Gaston Darboux,
mais von Staudt aurait plutôt souhaité modifier le système des axiomes
d'Euclide de façon que la géométrie ainsi constituée soit équivalente à la
géométrie analytique complexe.

Cette évolution se poursuivant, la situation est, à notre époque, complètement

retournée, et l'on définit abstraitement un espace dont les éléments
ont leurs coordonnées extraites d'un ensemble de nombres, par exemple
un corps: les propriétés des figures sont alors celles des équations qui les

définissent. Une géométrie est, comme l'a montré Félix Klein dans le

programme d'Erlangen, l'étude des invariants des figures dans un groupe
d'automorphismes de l'espace.

Le présent exposé est une introduction à ces géométries récentes, qui,
pour rester bref et suggestif, ne supposera que peu de connaissances d'algèbre
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dite moderne, et qui, au lieu de dégager celles des propriétés de la géométrie
classique qui sont valables quel que soit le corps de base, mettra plutôt
en évidence des propriétés étranges, spécifiques de la caractéristique.

C'est ainsi que, commençant par quelques propriétés élémentaires nous
n'utiliserons dans le premier paragraphe que la définition de la caractéristique

p du corps de base K: si l'on forme la progression arithmétique de

premier terme zéro, et de raison x # 0, définie par

un +1 un + x

u0 0

cette progression est périodique

et ne comporte, comme termes distincts que les termes w0, uu up_u car

et le nombre premier p qui a cette propriété est le même pour tous les

éléments x non nuls de K.

Nous verrons, par exemple, que lorsque le corps K est de caractéristique

p 2, les diagonales d'un quadrilatère complet ne sont jamais linéairement

indépendantes. Quel est le professeur de notre enseignement secondaire qui,
après avoir dessiné un quadrilatère complet au tableau, a vraiment ressenti

le besoin, avant de parler du triangle diagonal, de s'assuier de l'existence de

ce triangle?

a) Un plan affine peut être défini sur un corps K de caractéristique

p — 2 comme l'ensemble des points qui ont deux coordonnées x, y dans /C

avec, comme groupe d'automorphismes

up u0 o

I. Quelques exemples élémentaires

ax + by +
a'x + b'y

dont le sous-groupe

est le groupe des translations.
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Considérons trois points ABC non alignés: nous pouvons définir un

repère en attribuant à ces points les coordonnées A (0, 0) i? (1, 0) C (05 1),

c'est-à-dire en prenant AB et AC pour vecteurs de base.

Désignons par X la translation

qui fait passer de An B. Elle fait passer du point C à un point D (1, 1) et

nous dirons que le quadrilatère ABCD est un parallélogramme car, à

cause de la commutativité de l'addition, la translation

ih:,
qui fait passer de A à C fait aussi passer de B à D.
Mais du fait que

1 + 1=0
dans le corps K, la translation X transforme aussi B en A et D en C: elle

conserve le parallélogramme, et en désignant par / la transformation
identique, on a

X2 I
La translation Y conserve elle aussi le parallélogramme en transformant
C en A et D en B :

Y2 I
Dans ces conditions la translation

Z XY YX
produit des précédentes:

fx\ fx + D

U'Ui,
conserve elle aussi le parallélogramme,

Z2 I
en faisant passer simultanément de Aen Det de B en C. On a donc aussi

XZZX Y

YZ ZY X

Les segments joignant deux points quelconques du parallélogramme
définissent les translations d'un groupe G4 qui conserve le parallélogramme.
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On pourrait énoncer ce résultat sous une forme amusante en disant:
en géométrie sur un corps de caractéristique p 2 les diagonales d'un
parallélogramme sont équipollentes et son centre est à l'infini (l'impossibilité

de diviser par 2 entraîne d'ailleurs que le milieu d'un segment n'existe
pas).

b) On peut définir un plan projectif sur un corps K comme l'ensemble
des points qui ont trois coordonnées homogènes x, y, z dans K (non toutes
nulles), avec comme groupe d'automorphismes le groupe linéaire.

Lorsque le corps K est de caractéristique p 2, nous avons une géométrie

projective dans laquelle il n'y a pas de division harmonique: la valeur
— 1 + 1 du birapport exprime en effet que les points ne sont pas
distincts. Cette remarque incite à examiner les propriétés du quadrilatère
complet.

Le repère projectif peut toujours être choisi de telle sorte que les côtés

du quadrilatère soient

x — 0 y 0 z 0 x + y + z 0

Dans ces conditions les trois couples des sommets opposés sont

(1, 0, 0) et (0, 1, 1) sur la diagonale y z

(0, 1, 0) et (1, 0, 1) sur la diagonale z — x
(0, 0, 1) et (1, 1, 0) sur la diagonale x y

et les trois diagonales sont concourantes au point unitaire (1,1, 1).

En géométrie sur un corps de caractéristique deux, tout quadrilatère
complet a ses diagonales concourantes.

Bien entendu, ce résultat est l'extension à la géométrie projective de

celui obtenu en géométrie affine relativement au parallélogramme dont les

diagonales sont parallèles. Cependant nous voyons apparaître ici une symétrie

très remarquable : la figure comporte sept droites (quatre côtés et trois
diagonales) et sept points (six sommets et le point de concours des diagonales)

et chaque point appartient à trois des droites, pendant que chaque
droite contient trois points de la figure. Cette symétrie de rôle de tous les

éléments tient à ce qu'il s'agit de l'ensemble des points et des droites d'un

plan projectif construits sur GF (2).

Lorsqu 'un plan projectif est construit sur un corps x) commutatif s'il
contient un quadrilatère complet dont les diagonales sont concourantes, il en

Mais il existe des plans projectifs, non plongeables dans des espaces projectifs plus amples; ils ne
peuvent pas être définis par des coordonnées prises dans un corps commutatif. Dans de tels plans, la réciproque
que nous énonçons ici n'est pas vraie, cf. Pickert. Projective Ebene.
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est de même pour tous les quadrilatères complets, et le corps de base est de

caractéristique 2.

Il suffit, en effet, de choisir un repère associé au quadrilatère complet

remarquable, de la même manière que ci-dessus: les trois diagonales ont
alors pour équations

y + z 0 z -h x 0 x + y 0

système qui entraîne

x + x 0, y + y 0, z + z 0

de sorte que l'existence du point de concours des diagonales équivaut à

l'existence d'un élément non nul du corps de base qui vérifie

x + x =0
et la caractéristique est bien p 2.

En revenant à la géométrie affine du triangle de référence nous observons

que sur un corps de caractéristique 2, les classiques théorèmes de Menelaus

et de Jean de Ceva se confondent en un seul projectif: la condition nécessaire

et suffisante pour que trois droites issues des sommets d'un triangle soient

concourantes, est que leurs pieds sur les côtés opposés soient alignés.
Si l'on songe aux coniques inscrites dans un triangle qui, en géométrie

projective classique ont leurs contacts caractérisés précisément par la
propriété de concours précédent, on peut être étonné de ne rencontrer en
caractéristique 2 que la seule famille des droites doubles, et de devoir conclure
qu'en géométrie sur un corps de caractéristique 2 il n 'y a pas de coniques
proprement dites inscrites à un triangle.

c) Cette propriété paradoxale est liée aux vicissitudes de la théorie des

formes quadratiques, qui sur un corps de caractéristique 2 ne vérifient pas
le théorème de Gauss, de décomposition en carrés. Il est clair en effet que
l'identité:

x2 + y2

permet, quitte à introduire, quand cela est nécessaire, les racines carrées
des coefficients, de réduire à un seul carré toute combinaison linéaire de
carrés. Considérons donc dans le plan une conique

Ax2 + A'y2 + A"z2 + Byz + B'zx + B"xy 0

lorsque B, B\ B" sont tous nuls, le premier membre étant le carré d'une
forme linéaire, la conique se réduit à une droite double. Lorsqu'il n'en
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est pas ainsi, nous introduirons comme en géométrie classique, l'application
1 néaire

*\ ff'x\ /B"y + B'z\ /0 B"B'\ M
>; -> /; [B»x+BZ [B"0B - y
z) \f'J \B'x+By J \B'B 0/ \z]

qui est intrinsèquement liée à la conique en vertu de l'invariance de la
différentielle. La matrice symétrique, est de ce fait antisymétrique, donc irrégulière,

et l'application admet un noyau non réduit à zéro. Ainsi s'introduit
e point

projectivement lié à la conique, et que nous appellerons son « nucléon ».

En choisissant le repère de façon que le nucléon soit le point (0, 0, 1),

nous obtenons une première équation réduite:

Ax2 + A'y2 + A"z2 + B"xy 0

Si le nucléon appartient à la conique, c'est-à-dire si A" 0, l'équation
homogène en x, y représente deux droites (distinctes) issues de N.

Si le nucléon n'appartient pas à la conique, on peut choisir la droite
double

Ax2 + Afy2 + A"z2 0

comme côté opposé à N dans le repère et le choix du point unitaire,
arbitrairement, sur la conique donne l'équation réduite définitive

xy z2

On vérifie immédiatement sur cette équation que l'intersection de la

conique avec la droite

ux vy + wz 0

est formée de deux points distincts si w A 0 et de deux points confondus
si w 0.

Une conique non décomposée a ses tangentes concourantes, au nucléon

de la conique.
C'est pour cette raison qu'on ne trouve aucun triangle proprement dit,

circonscrit à une conique.
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Dans ces conditions, il est peut-être utile d'indiquer brièvement comment

se présente la discussion des différents types de faisceaux linéaires de

coniques. Dans le cas général, un faisceau de coniques ne contient aucune

droite double. Il y a quatre points bases, qui, joints deux à deux, définissent

six droites constituant les coniques décomposées du faisceau. Les nucléons

des coniques décrivent la septième droite du plan projectif défini ainsi sur
le corps des restes modulo 2.

Lorsque le nombre des points de base est réduit à trois ou à deux, l'un
de ces points étant un contact bi ou tri-ponctuel, il n'y a pas de droite double
dans le faisceau et les nucléons décrivent la tangente fixe.

Lorsque dans un faisceau il y a une droite double, les coniques du faisceau

ont un nucléon fixe: si ce nucléon n'appartient pas à la droite double, il
s'agit d'un faisceau de coniques bitangentes. Si le nucléon fixe appartient
à la droite double, c'est l'unique point base, et les coniques ont en ce point
un contact quadriponctuel.

Enfin, lorsque deux coniques d'un faisceau sont des droites doubles,
le premier membre de l'équation est une combinaison linéaire de carrés,
donc un carré, et toutes les coniques du faisceau sont les droites issues du

peint base, comptées doubles: en géométrie sur un corps de caractéristique
deux, il n'y a pas de faisceau involutifj mais des faisceaux de droites doubles.

d) Nous allons maintenant nous intéresser à la division harmonique
dans la géométrie sur un corps de caractéristique p 3. La relation entre
les coordonnées de quatre points alignés en division harmonique :

x3 — x1 x4 — xx

se transforme par un calcul facile en

xxx2 + x1x3 + x±x4 + x2x3 -h x2x4 + x3x4 0

qui montre qu'en géométrie sur un corps de caractéristique trois les quatre
points d'une division harmonique ne sont pas distingués en deux paires, mais
jouent le même rôle. C'est pourquoi nous l'appellerons une division
symétrique. Deux points choisis arbitrairement dans la division sont conjugués
par rapport aux deux points restants.

On peut éviter le calcul précédent en plaçant trois des points en oo, 0, 1,

en utilisant la triple transitivité du groupe projectif. Le conjugué de chaque
point, par rapport aux deux autres est, successivement
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et sur le corps des restes modulo 3, ces trois nombres sont égaux. Sous cette
forme réduite, on peut dire: en géométrie affine sur le corps des restes
modulo 3 chacun des trois points d'une droite est le milieu des deux autres.

Il résulte de cette symétrie que si, en géométrie projective plane sur un

corps de caractéristique trois, nous associons à un quadrangle ABCD, de

points diagonaux I, J, K, la conique sur laquelle les points A, B, C, D
forment une division symétrique, nous obtenons une figure dans laquelle
les propriétés classiques du quadrangle harmonique se retrouvent, symé-
trisées. Les tangentes a, b, c, d en A, B, C, D sont intrinsèquement
déterminées par le birapport — 1, sans qu'il soit nécessaire d'ordonner les points:
a, AB, AC, AD forment un faisceau symétrique. Les trois diagonales du

quadrilatère abcd sont, comme en géométrie classique, les côtés du triangle
IJK\ par I passent deux côtés du quadrangle ABCD et deux diagonales du

quadrilatère abcd, et ces quatre droites forment un faisceau symétrique.
En outre, l'intersection des côtés a, b du quadrilatère appartient à CD

conjuguée de AB de même que l'intersection des côtés c, d appartient à

AB conjuguée de CD, ces points étant, sur JK, conjugués par rapport à

J et K. Cette propriété, symétrique, est valable pour tous les sommets
du quadrilatère. Le quadrilatère abcd est non seulement circonscrit au
quadrangle ABCD (chaque côté contenant le sommet de même nom) mais

il lui est en même temps inscrit, en ce sens que les six sommets du quadrilatère
appartiennent respectivement aux six côtés du quadrangle.

On peut donner de cette propriété une forme réduite affine, en plaçant
JK à l'infini, et en disant: en géométrie affine sur un corps de caractéristique
trois, la figure obtenue en joignant les milieux des côtés d'un parallélogramme

est un parallélogramme et chacun est à la fois inscrit et circonscrit
à l'autre.

La configuration projective ainsi associée à quatre points d'un plan

comporte 13 points et 13 droites; elle est telle que toute droite contient

quatre points en division symétrique et que par tout point passent quatre
droites formant un faisceau symétrique: c'est un plan projectif construit

sur le corps des restes modulo 3.

Cette propriété pourrait, comme précédemment, servir à caractériser

la géométrie projective dont nous nous occupons.

e) Sans vouloir multiplier les exemples élémentaires nous remarquerons
encore cette propriété de la droite projective sur le corps des restes modulo
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cinq: les six points d'une telle droite projective forment trois couples deux à

deux en division harmonique.
En effet, en choisissant trois points quelconques de l'ensemble comme

repère (oo, 0, 1) les autres ont pour coordonnées 2, — 1, — 2: les deux

couples (oo, 0) (1, — 1) et les deux couples (oo, 0) (2, — 2) sont évidemment

harmoniques. Et le conjugué de 2 par rapport (— 1, 1) est

nous ne nous appesantirons pas sur les propriétés de commutation liées à

cette figure.

II. Propriétés hermitiennes

Nous avons rencontré dans l'étude des formes quadratiques en

caractéristique deux, l'identité

x2 + y2 (x+y)2

cette propriété s'étend à toute caractéristique finie, sous la forme

xp + yp (x +y)p

plus généralement

xq + y9 (x + y)9

où q pk est une puissance de p : liée au « petit » théorème de Fermât,
elle tient à la divisibilité par p des coefficients binômiaux. Elle montre que
dans un corps de caractéristique p, l'opération

x -> xp

est un automorphisme, qui engendre un groupe.
De même que l'automorphisme du corps complexe

z x + iy z X — iy

avait permis à Hermite de définir les formes, puis la géométrie qui porte
son nom, de même, il est possible de définir, en caractéristique p, les formes
sesquilinéaires.

Considérons un espace vectoriel, sur un corps de caractéristique p, et
une forme / (x, y) qui à un couple de vecteurs Z, Y associe un nombre du

corps de base, avec les propriétés suivantes:
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a) la forme est linéaire par rapport à X:

f(ÂX, Y) Âf(X, Y)

f(X'+X\ Y) =f(X\ Y) + /(X", Y)

b) la forme est semilinéaire par rapport à Y:

f(X,ÂY) Âqf(X, Y)

f(X,Y' + Y") f (X, Y') + / (X, Y")

Il est clair que lorsqu'on passe de l'espace vectoriel à l'espace projectif
par la traditionnelle relation d'homogénéité, une telle forme, dite sesquili-
néaire, possède, pour le couple de points correspondants, les propriétés
d'une fonction caractéristique. En désignant toujours par X, Y les points
correspondant aux deux vecteurs de mêmes noms, la relation

/(x, y) o

est une propriété géométrique de l'espace projectif, que nous appellerons

une sesquipolarité.
Pour en montrer brièvement les propriétés, je supposerai que l'espace

vectoriel étant à trois dimensions, nous traitons de géométrie projective
plane.

Lorsque le point Y A est donné, le lieu des points X qui lui
correspondent

/(X, A) 0

est une droite que nous appellerons la polaire de A. En faisant décrire à Y

une droite

Y A + îB

la polaire

/(X, A) + lqf(X,B) 0

décrit un faisceau linéaire de droites. Le birapport r de quatre points alignés

est celui des t, le birapport des polaires est celui des tq. Comme l'expression
du birapport est rationnelle, et que l'élévation à la puissance q est un homo-

morphisme, le birapport des quatre polaires est rq.

De même lorsque le point X A est donné, le lieu des points Y qui lui
correspondent a pour équation

/U, X) 0.
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Sous réserve d'étendre éventuellement le corps de base (comme on le fait
en géométrie réelle lorsqu'on introduit des éléments imaginaires conjugués),
le premier membre est la puissance g-ème d'une forme linéaire: le lieu

est une droite (multiple) que nous appellerons la semi-polaire de A. En

faisant décrire à X une droite

X A + tB

la semi-polaire

f (A, Y) + tf(B, Y) 0

décrit un faisceau linéaire de droites, et en utilisant comme plus haut l'homo-
morphisme fondamental, on voit que le birapport de quatre semi-polaires
est la racine #-ème du birapport r des quatre points correspondants.

Pour alléger cet exposé, nous nous limiterons au cas où la correspondance

entre un point et sa polaire, est biunivoque. Nous voyons ainsi
comment la notion de sesquipolarité généralise la notion classique de transformation

par polaires réciproques, associée aux formes bilinéaires. Cette
théorie classique est immédiatement liée à celle des formes quadratiques, et

il s'introduit ici toute une série de courbes (et de variétés dans les espaces

projectifs de dimension quelconque), lieu des points qui appartiennent à

leur polaire, et par conséquent aussi à leur semi-polaire:

f(X,X) - 0

Ce sont ces courbes et variétés que, en accord avec M. Beniamino Segre,

nous nommerons variétés hermitiennes 1).

Le dédoublement de la polarité pose cependant la question de la
recherche des couples point-droite pour lesquels il y a réciprocité, c'est-à-
dire des points pour lesquels la polaire est en même temps la semi-polaire.
Dans le cas régulier, auquel nous nous sommes limités, on obtient une
configuration très simple : les éléments pour lesquels il y a réciprocité sont les points
et les droites d'un plan projectif sous-jacent au plan donné dans lequel les
coordonnées sont prises dans le corps à q2 éléments.

Ce résultat est important car, de même qu'en géométrie classique des

formes quadratiques, la recherche d'un repère conjugué est équivalente
à la décomposition en carrés de Gauss, de même, ici, l'obtention d'un repère

Cf. L. Gauthier: Géométrie hermitienne généralisée. Bulletin Académie Royale de Belgique 1966,
p. 421. Dans ce mémoire, ces variétés étaient désignées, pour une autre raison, sous le nom de variétés de
Fermât. Cf. B. Segre: Hermitian geometries, with special regard to the finite case. Actas Coloquio Internacional
Geometria Algebraica Madrid 1965.
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conjugué (avec réciprocité) permet de définir une forme réduite, de Fermât :

xq+1 + yq+1 + zq+ 1 Q

Pour donner un exemple simple d'étude de courbe hermitienne, prenons
le cas q p 3. La quartique Q

x4 + y4 + z4 0

est coupée par toutes les droites du plan en des points formant des divisions
symétriques, comme on le voit après avoir remarqué que

(xo+AxJ4 x40 + Ax%xx + À3 x0xl + A4 xf

ne contient pas de terme en A2. Pour cette raison, nous dirons que la quartique

Q est totalement symétrique.
En particulier, si le point (x0, y0, z0) appartient à Q, la tangente en ce

point, définie, suivant l'habitude classique des géomètres algébristes,
comme la droite exceptionnelle, pour laquelle A 0 est racine multiple
de l'équation d'intersection, a pour équation:

x\X +y30Y+z\Z 0

le premier membre est précisément la forme sesquilinéaire associée à l'équation

de Q, et la tangente est la polaire du point de contact.
Cette remarque associée aux propriétés d'alignement montre que quatre

points alignés sur Q ont des tangentes concourantes suivant un faisceau
symétrique. Ces quatre tangentes recoupent d'ailleurs Q en quatre points alignés.

D'autre part, la racine A 0 est dans ce cas une racine au moins triple,
le contact de la tangente avec la courbe est au moins triponctuel, et la courbe

Q est totalement inflexionnelle c'est-à-dire que tous ses points sont
d'inflexion.

Les points pour lesquels il y a réciprocité polaire sont ceux dont les

coordonnées sont des entiers de Gauss: a + bi (où a, b sont des restes

modulo 3 et i2 — 1). Il y a 91 tels points dont 28 sont sur la courbe g,
la tangente ayant alors un contact quadriponctuel, et il y en a 63 qui n'appartiennent

pas à Q. Une étude approfondie de cette question et des fonctions
modulaires en caractéristique trois x) rapproche ces deux nombres de la
détermination des 28 bitangentes et des 63 familles de coniques quadritan-
gentes, donnée par F. Klein dans son étude de la quartique canonique en

géométrie complexe.

Cf. Luc Gauthier: L'invariant modulaire dans la géométrie sur un corps de caractéristique trois. Journal
de mathématiques pures et appliquées 1957, p. 117.
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La détermination de la tangente courante à la quartique totalement

symétrique Q, associée à l'homomorphisme d'élévation au cube, montre

que l'équation tangentiale de Q est

iâ + v4 + w4 0

cette courbe est donc autoduale.

D'un point P quelconque du plan on mène quatre tangentes à Q,

formant un faisceau symétrique : leurs contacts sont alignés sur la semipolaire
de P. Lorsque P est sur la quartique Q, sa semipolaire passe par P et est

tangente à g en un point P' : le faisceau est alors formé de PP' triple et de la

tangente en P simple.
Comme la quartique Q ne comporte aucune singularité ponctuelle, elle

est de genre 3. En géométrie projective complexe les quartiques de genre 3

sont de classe 12. Nous rencontrons ici, pour la seconde fois, le fait qu'en
géométrie sur un corps de caractéristique p les propriétés tangentielles sont

profondément différentes de celles de la géométrie complexe classique.
Dans la théorie des coniques, pour p 2 nous avons trouvé que l'enveloppe
des tangentes n'est pas du tout la conique elle-même, mais le nucléon de

la conique, qui est de classe 1. Dans la présente étude, en caractéristique

p 3, la quartique Q est bien l'enveloppe de ses tangentes, mais le

point caractéristique d'une tangente:

X u3 Y v3 Z w3

n'est pas le point de contact, puisque

w Xq v yl vv Zq

C'est le point déduit du point de contact par l'homomorphisme x -> x9 :

c'est le tangentiel du point de contact.
Nous verrons plus loin comment peut être élaborée non seulement la

géométrie tangentielle, mais toute la géométrie infinitésimale.

III. Quelques questions de géométrie algébrique

Pour rester fidèle au but que je me suis proposé, je me bornerai ici à

indiquer quelques théorèmes classiques de la géométrie complexe qui perdent
leur validité en géométrie sur un corps de caractéristique p.

Nous avons montré, comme conséquence de l'homomorphisme
fondamental, qu'il n'y a pas, en géométrie sur un corps de caractéristique deux,
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de faisceaux involutifs, mais qu'en revanche il existe des faisceaux de droites
doubles :

y2 — Àx2 0

Plus généralement, sur un corps de caractéristique p

yp - Xxp 0

représente un faisceau linéaire de droites />-uples.
Le théorème classique de Bertini assurant que la courbe générale d'un

système linéaire privé de composante fixe ne peut avoir de point multiple
variable est donc essentiellement lié à l'absence d'extensions inséparables
et appartient au seul domaine de la géométrie sur un corps de caractéristique

zéro (ou infinie, suivant les notations du lecteur).
La quartique totalement symétrique que nous avons présentée en

géométrie sur un corps de caractéristique 3 fournit, elle aussi, en tant que courbe
totalement inflexionnelle, un contre-exemple au théorème complémentaire
de Weierstrass: Le théorème des lacunes, dont on peut donner une démonstration

valable en toute caractéristique, affirme que toute place d'une courbe
de genre g peut être l'unique pôle d'une fraction rationnelle définie sur la
courbe, l'ordre de multiplicité de ce pôle prenant toute valeur entière, à

part g lacunes inférieures à 2g. Le théorème complémentaire affirme que
sauf en un nombre fini de places exceptionnelles, les lacunes sont 1, 2, g.

Pour une courbe de genre g ** 3, le modèle canonique est une quartique
plane; en un point ordinaire les lacunes sont 1, 2, 3: les points exceptionnels
de Weierstrass sont les points d'inflexion. La quartique totalement
symétrique Q admet tous ses points comme points d'inflexion, donc comme

points exceptionnels de Weierstrass. Il est d'ailleurs facile de vérifier que les

lacunes sont 1, 2, 4 sauf lorsqu'on choisit l'un des 28 points de la configuration

de réciprocité, pour lesquels les lacunes sont 1, 2, 5.

Considérons maintenant, dans un espace projectif à trois dimensions,

sur un corps de caractéristique trois, la surface

xy3 + yz3 + zt3 + tx3 — 0

c'est une variété hermitienne, dont nous allons obtenir une représentation
paramétrique rationnelle en posant:

z sa u3x

y + ut vx
On obtient, effectivement
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x u10 — 1

y — V (llV2 + 1)

Z « tt3(M10-i)

t v(v2 + u9)

Comme it est défini par son cube, il a, pour un point donné, une valeur

unique: cette représentation rationnelle biunivoque ne peut cependant pas

être modifiée en une représentation birationnelle, car une surface du

quatrième ordre sans singularité a tous ses genres égaux à 1. Nous obtenons

ainsi un contre-exemple au théorème classique de Castelnuovo relatif aux

surfaces rationnelles.
Les variétés hermitiennes fournissent des exemples en toute dimension

(exception faite des courbes) de variétés admettant des représentations
rationnelles biunivoques, mais non birationnelles, avec des genres non
bornés.

IV. La géométrie infinitésimale

Nous avons rencontré, en géométrie sur un corps de caractéristique
trois, une quartique dont tous les points sont inflexionnels. C'est un exemple
de courbe dont tous les points sont singuliers du point de vue tangentiel.
Le fait, que nous avons rencontré également, que l'enveloppe des tangentes
à une courbe n'est pas la courbe elle-même, montre, lui aussi, la nécessité

de préciser les fondements de la géométrie infinitésimale.

a) Il faut d'abord donner une signification claire aux notions de

voisinages d'un point sur une courbe (plus généralement sur une variété). C'est

une question de nature topologique, et tant que l'on considère les points
d'une courbe à coordonnées prises dans un corps fini, ils forment un
ensemble discret qui n'est naturellement muni que de la topologie discrète.

Mais, dès que l'on effectue des extensions infinies du corps de base, c'est-à-
dire dès que l'on associe à une courbe la connaissance de son équation,
on peut associer à chaque point des représentations paramétriques locales,
et définir des voisinages de tous ordres.

Soit a une coordonnée quelconque d'un point. On la remplace par la
série formelle

x a ajt + + antn +

qui admet pour spécialisation a, lorsque t 0. Les coefficients successifs
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de la série seront déterminés par un processus récurrent, qui est justifié
par une topologie très simple dont on munit l'anneau des séries formelles.
On sait que l'on appelle ordre œ d'une série formelle le numéro du premier
coefficient non nul. Cet entier associé à la série possède, vis-à-vis des

opérations sur les séries, des propriétés valuatives très simples, de sorte que
l'on définit un système dénombrable de voisinages de zéro, en appelant
w-ème voisinage de zéro l'ensemble Vn des séries formelles d'ordres

œ > n + 1

Ces voisinages sont emboîtés, et transportés par translation dans tout
l'espace vectoriel des séries formelles. Dans la topologie ainsi définie, la
limite de tn pour n augmentant indéfiniment est zéro, et on dispose ainsi
d'une technique tout à fait analogue à celle classique des développements
limités, pour écrire que le premier membre d'une équation appartient à

un voisinage de zéro donné a priori.

b) Voici, à titre d'exemple l'étude du contact, en géométrie sur un corps
de caractéristique deux, de la cubique

2 3
y z x

avec une conique. La cubique admet le point R (0, 0, 1) comme point singulier

et le point 1(0, 1, 0) comme point d'inflexion. La conique sera définie

paramétriquement :

X x0 + xxt + x2t2

y y0 + yi* +
2

Z Zq -j- Z^t ~b Z2Î"

le point (x0 y0 z0) étant un point courant de la cubique. Les coefficients

des puissances successives de t dans l'équation d'intersection sont

ylzo+ 4
yz0zx + x20x1

yoz2 + y izo+ xox2 + xixo

y21z1+ x\

y2zo + yiz2 + x2xo + X2X2

y2zi+ xzxi
2 3

y2^2 + X2
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L'équation
y20z + xlx 0

est l'équation de la tangente à la cubique au point courant: cette tangente

passe par le point fixe I où elle recoupe la cubique. On voit ainsi que les

coniques qui ont, au point considéré, un contact quadriponctuel avec la

cubique, ont pour nucléon /:

xi — zi — o

La conique osculatrice a pour équation

x2x0z0 + y2z20 + z2yl + xzx20 0

elle admet avec la cubique un contact 6-ponctuel.
En géométrie sur un corps de caractéristique deux, la cubique à point de

rebroussement admet tous ses points simples comme points sextactiques.

c) J'ai défini x) un procédé de transformation des équations, que j'ai
appelé le « perfectionnement », et qui a l'avantage de présenter l'étude d'une
variété algébrique sous une forme tout à fait analogue à l'étude d'une fonction

polynôme. Voici, en nous limitant à la géométrie affine plane, en quoi
il consiste:

Considérons un polynôme à deux variables / (x, y), à coefficients dans

un corps K parfait, de caractéristique p. Lorsqu'il est exprimé au moyen de

ses monômes

f(x,y)YjMkh Y,akhXkyh

l'homomorphisme fondamental fournit sa puissance /?-ème

F =f» Q»" XM'
sous forme d'un polynôme par rapport à

£ xp rj yp

à coefficients dans K. La réciproque est évidente puisque dans K parfait
les coefficients ont une racine p-ème. Cette propriété s'étend sans difficulté
aux fractions rationnelles.

Revenons alors au polynôme

f(x,y) £attxy

O Luc Gauthier: Géométrie infinitésimale cles courbes algébriques planes ou gauches sur un corps de
caractéristique p, Séminaire P. Dubreil et Ch. Pisot, décembre 1955, exposé 7 (Faculté des Sciences de Paris).
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et modifions les exposants modulo p, par exemple en choisissant comme
système de représentants les entiers 0, 1, 1 :

k pq + a

h pq' + ß

ceci nous permet de mettre / sous la forme

f(x,y) I (Z
a,0 g,g'

c'est-à-dire sous la forme d'un polynôme à exposants pris dans les restes

modulo p, les coefficients étant des polynômes en | et q.
Cette propriété s'étend immédiatement aux fractions rationnelles

/ p-1

9 9P

qui peuvent être écrites sous forme de polynômes à exposants pris dans les

restes modulo p, les coefficients étant rationnels en £ et q.

Lorsque le choix des représentants pris comme exposants est précisé,
la représentation est unique et il en résulte qu'une condition nécessaire et

suffisante pour qu 'une expression ait sa différentielle identiquement nulle est

qu 'elle appartienne au sous-corps des puissances p-èmes.

Pour cette raison, nous désignerons désormais les puissances p-èmes

sous le nom de quasi-constantes.
Considérons alors, maintenant, une quantité z, algébrique sur le corps K,

et son polynôme minimal /(z). Lorsqu'on écrit

ff'1 A1 zp_1 + + Ap

où les At sont des polynômes en £ zp, le premier coefficient non nul Ak

ne peut être le dernier car

ff - o

est contradictoire avec le fait que / est minimal. En dérivant p — 2 fois

zk-i p-1
on obtient

fg - A* +A+i
où g est un polynôme de l'idéal engendré par /et/'.
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L'équation

/(z) 0

entraîne que z est rationnel en Ç.

Cette propriété de clôture est importante car elle montre que toute

courbe

F(x,y) 0

peut, en un point ou Fy n'est pas nul, être mise sous forme résolue

y P(x;Ç,ri)

dans laquelle le second membre est un polynôme de degré p-1 au plus en x,
à coefficients quasi-constants.

Cette propriété s'étend d'ailleurs aux variétés de toutes dimensions,
et aux homomorphismes

x -> Ç xq

((q=pk) engendrés par l'homomorphisme fondamental.

d) Voici un exemple simple d'application de la méthode de transformation

précédente:
Sur un corps de caractéristique trois l'équation affine d'une courbe peut
être mise sous la forme

y Ax2 + Bx + C

où A, B, C sont des quasi constantes : Si A est identiquement nulle, la courbe
a tous ses points simples comme points d'inflexion. Si A n'est pas identiquement

nulle, on obtient les points d'inflexion en coupant la courbe proposée
par

A 0

et comme A est un cube, les points obtenus ont chacun une multiplicité
d'intersection multiple de 3 1).

C'est ainsi que la cubique

i) Dans l'étude des cubiques, A est le cube d'une forme linéaire. La classification projective se présente
ainsi: Si A est identiquement nulle, la cubique est totalement inflexionnelle (cf. exemple qui suit).

Si A 0 est une droite sécante ou tangente à la cubique, contenant éventuellement un point doubleil y a trois, un ou zéro point d'inflexion (cf. exemple du § e).
Le cas où il y a un seul point d'inflexion, de multiplicité 9, correspond à l'annulation de l'invariant de

Hasse.
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peut, sauf à l'origine qui est un point singulier, être écrite

£y n

y est une quasi constante: les tangentes à la courbe sont les droites

y y0

et l'intersection

(x-x0)3 0

montre bien que tous les points simples sont inflexionnels.
En géométrie projective, la quartique qui a trois rebroussements, a pour

équation

x2y2 + + z2*2 — o

en faisant z 1 et en multipliant par xy, on obtient l'équation «
perfectionnée » :

rjx + Çy + =0
qui montre que (pour p 3 encore), cette courbe est, elle aussi, totalement
inflexionnelle.

e) En géométrie sur un corps de caractéristique trois, les cubiques à

point de rebroussement ne forment pas une seule famille projective: nous

venons de montrer que la courbe

y2 x3

est totalement inflexionnelle. Considérons ensuite la cubique

y2 + x2y + x3 0

qui admet un point singulier unique à l'origine

(y —x2)2 x4 — x3

Pour former l'équation « perfectionnée », élevons les deux membres au
carré

(y — x2)3 (y — x2) x8 + x7 + x6

c'est-à-dire

(rj-Ç2)y rjx2 + £2 x + £2
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Les points d'inflexion sont obtenus en annulant le terme du second degré

rj — 0

mais nous avons déjà exclu l'origine comme point singulier.
La cubique considérée n 'admet aucun point d'inflexion véritable. En

revanche elle admet un point de rebroussement d'une nature plus subtile que

ceux de la géométrie classique : il ne vérifie pas le théorème de Puiseux.

Mais je ne veux pas, dans ce travail qui vise seulement à présenter

quelques aspects de la géométrie sur un corps de caractéristique p, entrer
dans l'étude, d'ailleurs délicate, des singularités des courbes et variétés

algébriques.

f) Sans donner non plus de développement au sujet d'une étude dont
je me suis occupé récemment, je voudrais cependant signaler que la géométrie

infinitésimale en caractéristique p, dispose actuellement de moyens
suffisants pour qu'on puisse analyser complètement la structure d'une variété
en un point, et lui associer un repère projectif mobile intrinsèquement défini.
Je renverrai seulement, sur ce sujet, à deux publications en cours, l'une à

Bologne (Luc Gauthier : Adaptation d'une méthode de Bompiani à la géométrie

infinitésimale sur les corps de Galois, Colloque de géométrie différentielle,

fin septembre 1967), l'autre dans le volume jubilaire dédié à M. Lucien
Godeaux (Luc Gauthier: Géométrie projective infinitésimale sur les corps
de Galois).

V. Essai de géométrie métrique

Lorsqu'on dispose d'une géométrie projective, et par conséquent, en
faisant choix d'un hyperplan à l'infini, d'une géométrie affine, il vient
naturellement à l'idée d'introduire une forme quadratique définie positive, à

laquelle on associera une distance, pour fabriquer une géométrie métrique.
Malheureusement, dans les corps finis l'absence de relation d'ordre

permettant de définir le qualificatif « positif » détruit cet espoir.
Cependant, dans l'intention de donner des applications en astronomie,

à l'étude des amas d'étoiles, P. Kustaanheimo x) et G. Järnefelt2), ont
montré que pour des valeurs particulières, (mais, non bornées) de la
caractéristique p, il est possible d'extraire de l'espace affine construit sur le corps

i952
Kustaanheimo: One the fundamental prime ofa finite world. Annales Academiae scientiarum fennicae,

2) Järnefelt: Reflections on a finite approximation to eucliclean geometry... Ibidem 1951.
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des restes modulo p un domaine (dont le nombre des points pourra, avec /?,

croître indéfiniment) que l'on peut munir d'une structure métrique
euclidienne.

Je voudrais indiquer rapidement ici les idées directrices qui ont fait le
succès de cette étude si originale.

On commence par donner du qualificatif « positif » une signification
compatible avec la seule structure multiplicative du corps des restes modulo
p. On sait que, en se bornant au cas de p impair, et au groupe multiplicatif
des restes non nuls, la théorie de la racine carrée conduit à considérer deux
classes d'entiers:

a) les restes quadratiques, c'est-à-dire ceux a pour lesquels la congruence

X2 a mod. p

admet des solutions.

b) les non-restes quadratiques, c'est-à-dire ceux b pour lesquels la

congruence

X2 — b mod p

n'a pas de solution.

Chaque classe contient le même nombre d'éléments.

Le produit de deux restes est un reste. Le produit d'un reste et d'un
non-reste est un non-reste. Le produit de deux non-restes est un reste.

L'application qui, à tout élément non nul du corps, fait correspondre le

symbole + si c'est un reste, et le symbole — si c'est un non-reste, a donc les

qualités multiplicatives de la « règle des signes ».

Il faut ensuite transporter cette qualification, par translation, dans le

domaine, de façon à pouvoir dire que l'inégalité

x >- y

signifie que x — y est un reste quadratique, modulo p. Comme la somme de

deux restes n'est pas toujours un reste, c'est ce point qui introduit les

limitations du domaine de validité. Kustaanheimo a montré que si m est le

produit des k premiers nombres premiers impairs, en choisissant

p — 1 mod 8 m

il existe une « chaîne euclidienne »

- M,..., - 2, - 1,0,1,2,..., + M
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de IM + 1 entiers tels que, modulo p, tous les nombres 1, 2, M soient
des restes quadratiques et tous les nombres — 1, — 2, — M soient des

non-restes. Le pavé affine formé des points dont les coordonnées sont prises
dans une telle chaîne euclidienne est alors susceptible d'être muni de la
métrique dans laquelle la distance est donnée par la règle de Pythagore.

Je renverrai, pour le développement de cette question, aux auteurs eux-
mêmes.

(Achevé à Novosibirsk le 9 février 1968)
L. Gauthier
Professeur à la Faculté
des Sciences de Paris




	LA GÉOMÉTRIE SUR LES CORPS DE CARACTÉRISTIQUE NON NULLE
	I. Quelques exemples élémentaires
	II. Propriétés hermitiennes
	III. Quelques questions de géométrie algébrique
	IV. La géométrie infinitésimale
	V. Essai de géométrie métrique


