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LA GEOMETRIE SUR LES CORPS DE CARACTERISTIQUE
NON NULLE

par Luc GAUTHIER

a la mémoire de Jean Karamata

Lorsque Descartes eut I'idée d’associer & une figure géométrique un
repére de coordonnées de fagon a substituer au raisonnement basé sur
I'intuition de I’espace, un calcul effectué sur les équations correspondantes,
il n’avait, je crois, pas d’autre but que de faciliter le progrés de la connais-
sance géométrique.

Cependant, la géométrie analytique ainsi créée comportait une quantité
notable d’équations algébriques, et les mathématiciens sentirent bientot
la nécessité d’élargir les conceptions géométriques traditionnelles pour
interpréter les solutions complexes des équations.

Pendant longtemps, cette modification apportée aux notions geome-
triques n’a €té congue que comme une généralisation inéluctable de la géo-
métrie des Grecs, maintenue enracinée dans ses origines topographiques.
C’est probablement la raison pour laquelle on a si souvent mal compris les
efforts d’un von Staudt pour introduire les éléments imaginaires en géomé-
trie, indépendamment de la notion de coordonnées: il ne lui aurait pas
suffi de constater par un changement de repére le caractére invariant des
notions nouvellement introduites. C’est ce que fit plus tard Gaston Darboux,
mais von Staudt aurait plutdt souhaité modifier le systéme des axiomes
d’Euclide de fagon que la géométrie ainsi constituée soit équivalente a la
géométrie analytique complexe.

Cette évolution se poursuivant, la situation est, & notre époque, complé-
tement retournée, et I’on définit abstraitement un espace dont les éléments
ont leurs coordonnées extraites d’un ensemble de nombres, par exemple
un corps: les propriétés des figures sont alors celles des équations qui les
définissent. Une géométrie est, comme 1’a montré Félix Klein dans le pro-
gramme d’Erlangen, I'’é¢tude des invariants des figures dans un groupe
d’automorphismes de I’espace.

Le présent exposé est une introduction a ces géométries récentes, qui,
pour rester bref et suggestif, ne supposera que peu de connaissances d’algébre
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dite moderne, et qui, au lieu de dégager celles des propriétés de la géométrie
classique qui sont valables quel que soit le corps de base, mettra plutot
en évidence des propriétés étranges, spécifiques de la caractéristique.

C’est ainsi que, commengant par quelques propriétés élémentaires nous
n’utiliserons dans le premier paragraphe que la définition de la caractéris-
tique p du corps de base K: si I’on forme la progression arithmétique de
premier terme zéro, et de raison x # 0, définie par

Up+1 = Uy + X
uO = O
cette progression est périodique

un+ p = un

et ne comporte, comme termes distincts que les termes ug, uy, ... u,_, car

u, =ug =0

et le nombre premier p qui a cette propriété est le méme pour tous les élé-
ments x non nuls de K.

Nous verrons, par exemple, que lorsque le corps K est de caractéristique
p = 2, les diagonales d’un quadrilatére complet ne sont jamais linéairement
indépendantes. Quel est le professeur de notre enseignement secondaire qui,
aprés avoir dessiné un quadrilatére complet au tableau, a vraiment ressenti
le besoin, avant de parler du triangle diagonal, de s’assurer de I’existence de
ce triangle?

I. QUELQUES EXEMPLES ELEMENTAIRES
a) Un plan affine peut étre défini sur un corps K de caractéristique

—- 2 comme I’ensemble des points qui ont deux coordonnées x, y dans K,
avec, comme groupe d’automorphismes

X ax +by +c
y a'x+b'y+c
X X+c
y y+c

est le groupe des translations.

dont le sous-groupe
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Considérons trois points ABC non alignés: nous pouvons définir un
repére en attribuant & ces points les coordonnées 4 (0, 0) B (1,0) C (0, 1),
c’est-a-dire en prenant AB et AC pour vecteurs de base.

Désignons par X la translation

(x> (x + 1)

_>

y y

qui fait passer de 4 a B. Elle fait passer du point C & un point D (1, 1) et

nous dirons que le quadrilatére 4BCD est un parallélogramme car, a
cause de la commutativité de I’addition, la translation

@ ” <yi1>

qui fait passer de 4 a C fait aussi passer de B a D.
Mais du fait que ‘
1+1 =0

dans le corps K, la translation X transforme aussi B en 4 et D en C: elle
conserve le parallélogramme, et en désignant par [ la transformation iden-
tique, on a

X =1

La translation Y conserve elle aussi le parallélogramme en transformant
Cen Aet Den B:

Y2 =]
Dans ces conditions la translation

Z =XY =YX

()-65)

conserve elle aussi le parallélogramme,

Z?* =17

produit des précédentes:

en faisant passer simultanément de 4 en D et de B en C. On a donc aussi

XZ =7ZX =7
YZ =7ZY =X

Les segments joignant deux points quelconques du parallélogramme
définissent les translations d’un groupe G, qui conserve le parallélogramme.




— 126 —

On pourrait énoncer ce résultat sous une forme amusante en disant:
en géométrie sur un corps de caractéristique p = 2 les diagonales d’un
parallélogramme sont équipollentes et son centre est a I’infini (I'impossibi-
lité de diviser par 2 entraine d’ailleurs que le milieu d’un segment n’existe
pas).

b) On peut définir un plan projectif sur un corps K comme I’ensemble
des points qui ont trois coordonnées homogénes x, y, z dans K (non toutes
nulles), avec comme groupe d’automorphismes le groupe linéaire.

Lorsque le corps K est de caractéristique p = 2, nous avons une géomé-
trie projective dans laquelle il n’y a pas de division harmonique: la valeur
— 1 = -+ 1 du birapport exprime en effet que les points ne sont pas dis-
tincts. Cette remarque incite a examiner les propriétés du quadrilatére
complet.

Le repere projectif peut toujours €tre choisi de telle sorte que les cOtés
du quadrilatére soient

x=0, y=0, z=0, x+y+z=0

Dans ces conditions les trois couples des sommets opposés sont
(1,0,0) et (0, 1, 1) sur la diagonale y = z
(0, 1,0) et (1,0, 1) sur la diagonale z = x
(0,0, 1) et (1,1, 0) sur la diagonale x = y

et les trois diagonales sont concourantes au point unitaire (1, 1, 1).

En géométrie sur un corps de caractéristique deux, tout quadrilatére
complet a ses diagonales concourantes.

Bien entendu, ce résultat est I’extension a la géométrie projective de
celui obtenu en géométrie affine relativement au parallélogramme dont les
diagonales sont parall¢les. Cependant nous voyons apparaitre ici une symé-
trie trés remarquable: la figure comporte sept droites (quatre cOtés et trois
diagenales) et sept points (six sommets et le point de concours des diago-
nales) et chaque point appartient a trois des droites, pendant que chaque
droite contient trois points de la figure. Cette symétrie de role de tous les
éléments tient a ce qu’il s’agit de ’ensemble des points et des droites d’un
plan projectif construits sur GF (2).

Lorsqu’un plan projectif est construit sur un corps?') commutatif, s’il
contient un quadrilatére complet dont les diagonales sont concourantes, il en

1) Mais il existe des plans projectifs, non plongeables dans des espaces projectifs plus amples_; ils ne
peuvent pas étre définis par des coordonnées prises dans un corps commutatif. Dans de tels plans, la réciproque
que nous énongons ici n’est pas vraie. cf. Pickert. Projective Ebene.
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est de méme pour tous les quadrilatéres complets, et le corps de base est de
caractéristique 2.

11 suffit, en effet, de choisir un repére associé au quadrilatére complet
remarquable, de la méme maniére que ci-dessus: les trois diagonales ont
alors pour équations

y+z=0, z4+x=0, x+y=0
systéme qui entraine
x+x =0, y+y =0, z+z =0

de sorte que I'existence du point de concours des diagonales équivaut a
Iexistence d’un élément non nul du corps de base qui vérifie

x+x =0

et la caractéristique est bien p = 2.

En revenant a la géométrie affine du triangle de référence nous observons
que sur un corps de caractéristique 2, les classiques théorémes de Menelaus
et de Jean de Ceva se confondent en un seul projectif: la condition nécessaire
et suffisante pour que trois droites issues des sommets d’un triangle soient
concourantes, est que leurs pieds sur les cotés opposés soient alignés.

Si I’on songe aux coniques inscrites dans un triangle qui, en géométrie
projective classique ont leurs contacts caractérisés précis€ément par la pro-
priété de concours précédent, on peut étre étonné de ne rencontrer en carac-
téristique 2 que la seule famille des droites doubles, et de devoir conclure
qu’en géométrie sur un corps de caractéristique 2 il n’y a pas de coniques pro-
prement dites inscrites a un triangle.

c) Cette propriété paradoxale est liée aux vicissitudes de la théorie des
formes quadratiques, qui sur un corps de caractéristique 2 ne vérifient pas
le théoréme de Gauss, de décomposition en carrés. 11 est clair en effet que
I'identité:

X+ 2 = (x+y)?

permet, quitte a introduire, quand cela est nécessaire, les racines carrées
des coefficients, de réduire a un seul carré toute combinaison linéaire de
carrés. Considérons donc dans le plan une conique

Ax* + A'y* + A"z* + Byz + B'zx + B'xy = 0

lorsque B, B’, B” sont tous nuls, le premier membre étant le carré d’une
forme lin€aire, la conique se réduit a une droite double. Lorsqu’il n’en
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est pas ainsi, nous introduirons comme en géométrie classique, ’application
1 néaire

X f. B"y +B’z 0B" B’ X
y|=|f,)|=|Bx+Bz | =|B"0B ||y
z f. B'x + By B'BO %

qui est intrinséquement liée 4 la conique en vertu de I'invariance de la diffé-
rentielle. La matrice symétrique, est de ce fait antisymétrique, donc irrégu-
liere, et I’application admet un noyau non réduit a zéro. Ainsi s’introduit
e point
B
N = | B
B

projectivement lié a la conique, et que nous appellerons son « nucléon ».
En choisissant le repére de fagon que le nucléon soit le point (0, 0, 1),
nous obtenons une premié¢re équation réduite:

Ax2 +A/y2 +A//ZZ +B//xy — 0

Si le nucléon appartient a la conique, c’est-a-dire si A" = 0, I’équation
homogene en x, y représente deux droites (distinctes) issues de N.

Si le nucléon n’appartient pas a la conique, on peut choisir la droite
double

AxZ +A/y2 +A//ZZ — O

comme cb6té opposé a N dans le repére et le choix du point unitaire, arbi-
trairement, sur la conique donne I’équation réduite définitive

xy = z°
On vérifie immédiatement sur cette équation que lintersection de la
conique avec la droite

ux +vy + wz =0

est formée de deux points distincts si w # 0 et de deux points confondus
si w= 0.

Une conique non décomposée a ses tangentes concourantes, au nucléon
de la conique.

C’est pour cette raison qu’on ne trouve aucun triangle proprement dit,
circonscrit & une conique.
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Dans ces conditions, il est peut-étre utile d’indiquer briévement comment
se présente la discussion des différents types de faisceaux linéaires de
coniques. Dans le cas général, un faisceau de coniques ne contient aucune
droite double. Il y a quatre points bases, qui, joints deux a deux, définissent
six droites constituant les coniques décomposées du faisceau. Les nucléons
des coniques décrivent la septiéme droite du plan projectif défini ainsi sur
le corps des restes modulo 2.

Lorsque le nombre des points de base est réduit a trois ou a deux, 'un
de ces points étant un contact bi ou tri-ponctuel, il n’y a pas de droite double
dans le faisceau et les nucléons décrivent la tangente fixe.

Lorsque dans un faisceau il y a une droite double, les coniques du faisceau
ont un nucléon fixe: si ce nucléon n’appartient pas a la droite double, il
s’agit d’un faisceau de coniques bitangentes. Si le nucléon fixe appartient
a la droite double, c’est I'unique point base, et les coniques ont en ce point
un contact quadriponctuel.

Enfin, lorsque deux coniques d’un faisceau sont des droites doubles,
le premier membre de ’équation est une combinaison linéaire de carrés,
donc un carré, et toutes les coniques du faisceau sont les droites issues du
pcint base, comptées doubles: en géométrie sur un corps de caractéristique
deux, il n’y a pas de faisceau involutif, mais des faisceaux de droites doubles.

d) Nous allons maintenant nous intéresser a la division harmonique
‘dans la géométrie sur un corps de caractéristique p = 3. La relation entre
les coordonnées de quatre points alignés en division harmonique:

X3_xl.X4_—x1— 1

X3 - xZ X4 - x2
se transforme par un calcul facile en
x1x2 + XIX3 - X1X4 + x2x3 + X2X4 ‘I“ X3x4_ = 0

qui montre qu’en géométrie sur un corps de caractéristique trois les quatre
points d’une division harmonique ne sont pas distingués en deux paires, mais
Jouent le méme role. Cest pourquoi nous ’appellerons une division symé-
trigue. Deux points choisis arbitrairement dans la division sont conjugués
par rapport aux deux points restants.

On peut éviter le calcul précédent en plagant trois des points en oo, 0, 1,
en utilisant la triple transitivité du groupe projectif. Le conjugué de chaque
point, par rapport aux deux autres est, successivement




et sur le corps des restes modulo 3, ces trois nombres sont égaux. Sous cette
forme réduite, on peut dire: en géométrie affine sur le corps des restes mo-
dulo 3 chacun des trois points d’une droite est le milieu des deux autres.

Il résulte de cette symétrie que si, en géométrie projective plane sur un
corps de caractéristique trois, nous associons a un quadrangle ABCD, de
points diagonaux 7, J, K, la conique sur laquelle les points 4, B, C, D
forment une division symétrique, nous obtenons une figure dans laquelle
les propriétés classiques du quadrangle harmonique se retrouvent, symé-
trisées. Les tangentes a, b, ¢, d en A, B, C, D sont intrinséquement déter-
minées par le birapport — 1, sans qu’il soit nécessaire d’ordonner les points:
a, AB, AC, AD forment un faisceau symétrique. Les trois diagonales du
quadrilatére abcd sont, comme en géométrie classique, les cotés du triangle
1JK: par I passent deux codtés du quadrangle ABCD et deux diagonales du
quadrilatére abcd, et ces quatre droites forment un faisceau symétrique.

En outre, I'intersection des cotés a, b du quadrilatére appartient a CD
conjuguée de 4B de méme que l'intersection des cotés ¢, d appartient a
AB conjuguée de CD, ces points étant, sur JK, conjugués par rapport a
J et K. Cette propriété, symétrique, est valable pour tous les sommets
du quadrilatére. Le quadrilatére abcd est non seulement circonscrit au qua-
drangle ABCD (chaque coté contenant le sommet de méme nom) mais
il lui est en méme temps inscrit, en ce sens que les six sommets du quadrilatére
appartiennent respectivement aux six cotés du quadrangle.

On peut donner de cette propriété une forme réduite affine, en plagant
JK a Pinfini, et en disant: en géométrie affine sur un corps de caractéristique
trois, la figure obtenue en joignant les milieux des cotés d’un parallélo-
gramme est un parallélogramme et chacun est a la fois inscrit et circonscrit
a ’autre.

La configuration projective ainsi associée & quatre points d’un plan
comporte 13 points et 13 droites; elle est telle que toute droite contient
quatre points en division symétrique et que par tout point passent quatre
droites formant un faisceau symétrique: c’est un plan projectif construit
sur le corps des restes modulo 3.

Cette propriété pourrait, comme précédemment, servir a caractériser
la géométrie projective dont nous nous occupons.

e) Sans vouloir multiplier les exemples élémentaires nous remarquerons
encore cette propriété de la droite projective sur le corps des restes modulo
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cing: les six points d’une telle droite projective forment trois couples deux a
deux en division harmonique.

En effet, en choisissant trois points quelconques de I’ensemble comme
repére (o0, 0, 1) les autres ont pour coordonnées 2, — I, — 2: les deux
couples (oo, 0) (1, — 1) et les deux couples (oo, 0) (2, — 2) sont évidemment
harmoniques. Et le conjugué de 2 par rapport (— 1, 1) est

nous ne nous appesantirons pas sur les propriétés de commutation liées a
cette figure.

II. PROPRIETES HERMITIENNES

Nous avons rencontré dans I’étude des formes quadratiques en carac-
téristique deux, 'identité

x* +y? = (x+y)*

cette propriété s’étend a toute caractéristique finie, sous la forme
XP 4+ y? = (x+y)°

plus généralement
Xt 4yt = (x+y)*

oll ¢ = p* est une puissance de p: liée au « petit » théoréme de Fermat,
elle tient a la divisibilité par p des coefficients bindémiaux. Elle montre que
dans un corps de caractéristique p, ’opération

x — x?

est un automorphisme, qui engendre un groupe.
De méme que 'automorphisme du corps complexe

z =X+iy—>zZ =x—1y

avait permis a Hermite de définir les formes, puis la géométrie qui porte
son nom, de méme, il est possible de définir, en caractéristique p, les formes
sesquilinéaires.

Considérons un espace vectoriel, sur un corps de caractéristique p, et

une forme f(x, y) qui & un couple de vecteurs X, Y associe un nombre du
corps de base, avec les propriétés suivantes:
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a) la forme est linéaire par rapport a X:
fX,Y) = 2f(X,Y)
SX'+X",Y) =f(X",Y)+f(X", Y)
b) la forme est semilinéaire par rapport a Y:
f(X,2.Y) = 21f(X,Y)
X, Y +Y") =f(X,Y") +f(X,Y")

Il est clair que lorsqu’on passe de I’espace vectoriel a 1’espace projectif
par la traditionnelle relation d’homogénéité, une telle forme, dite sesquili-
néaire, possede, pour le couple de points correspondants, les propriétés
d’une fonction caractéristique. En désignant toujours par X, Y les points
correspondant aux deux vecteurs de mémes noms, la relation

f(X,Y) =0

est une propriété géométrique de ’espace projectif, que nous appellerons
une sesquipolarité.

Pour en montrer briévement les propriétés, je supposerai que l’espace
vectoriel étant a trois dimensions, nous traitons de géométrie projective
plane.

Lorsque le point ¥ = A4 est donné, le lieu des points X qui lui corres-
pondent

f(X,4) =0

est une droite que nous appellerons la polaire de 4. En faisant décrire & Y
une droite

= A + 1B
la polaire
f(X,4) +1f(X,B) =0

décrit un faisceau linéaire de droites. Le birapport » de quatre points alignés
est celui des ¢, le birapport des polaires est celui des 7. Comme l'expression
du birapport est rationnelle, et que I’élévation a la puissance g est un homo-
morphisme, le birapport des quatre polaires est r9.

De méme lorsque le point X = A4 est donné, le lieu des points Y qui lui
correspondent a pour équation

f(4,Y) = 0.
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Sous réserve d’étendre éventuellement le corps de base (comme on le fait
en géométrie réelle lorsqu’on introduit des éléments imaginaires conjugues),
le premier membre est la puissance g-€éme d’une forme linéaire: le lieu
est une droite (multiple) que nous appellerons la semi-polaire de A. En
faisant décrire a X une droite

la semi-polaire
f(4,Y)+1f(B,Y) =0

décrit un faisceau linéaire de droites, et en utilisant comme plus haut I’homo-
morphisme fondamental, on voit que le birapport de quatre semi-polaires
est la racine g-¢éme du birapport r des quatre points correspondants.

Pour alléger cet exposé, nous nous limiterons au cas ou la correspon-
dance entre un point et sa polaire, est biunivoque. Nous voyons ainsi com-
ment la notion de sesquipolarité généralise la notion classique de transfor-
mation par polaires réciproques, associée aux formes bilinéaires. Cette
théorie classique est immédiatement liée a celle des formes quadratiques, et
il s’introduit ici toute une série de courbes (et de variétés dans les espaces
projectifs de dimension quelconque), lieu des points qui appartiennent a
leur polaire, et par conséquent aussi a leur semi-polaire:

X, X) =0

Ce sont ces courbes et variétés que, en accord avec M. Beniamino Segre,
nous nommerons variétés hermitiennes ).

Le dédoublement de la polarit¢ pose cependant la question de la
recherche des couples point-droite pour lesquels il y a réciprocité, c’est-a-
dire des points pour lesquels la polaire est en méme temps la semi-polaire.
Dans le cas régulier, auquel nous nous sommes limités, on obtient une confi-
guration trés simple: les éléments pour lesquels il y a réciprocité sont les points
et les droites d’un plan projectif sous-jacent au plan donné dans lequel les
coordonnées sont prises dans le corps a q* éléments.

Ce résultat est important car, de méme qu’en géométrie classique des
formes quadratiques, la recherche d’un repére conjugué est équivalente
a la décomposition en carrés de Gauss, de méme, ici, I'obtention d’un repére

1) Cf. L. Gauthier: Géomeétrie hermitienne généralisée. Bulletin Académie Royale de Belgique 1966,
p. 421. Dans ce mémoire, ces variétés étaient désignées, pour une autre raison, sous le nom de variétés de
Fermat. Cf. B. Segre: Hermitian geometries, with special regard to the finite case. Actas Coloquio Internacional
Geometria Algebraica Madrid 1965.
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conjugué (avec réciprocité) permet de définir une forme réduite, de Fermat :
xq+1 + yq+1 + Zq+1 =0

Pour donner un exemple simple d’étude de courbe hermitienne, prenons
le cas ¢ = p = 3. La quartique Q

x*+y*+ 2zt =0

est coupée par toutes les droites du plan en des points formant des divisions
symétriques, comme on le voit aprés avoir remarqué que

(xo +2x)* = x*y + Axox, + A3 xox; + A4 x7

ne contient pas de terme en A2. Pour cette raison, nous dirons que la quar-
tique Q est totalement symétrique.

En particulier, st le point (x,, yo, zo) appartient a Q, la tangente en ce
point, définie, suivant I’habitude classique des géomeétres algébristes,
comme la droite exceptionnelle, pour laquelle 4 = 0 est racine multiple
de I’équation d’intersection, a pour équation:

o X +y0Y+20Z =0

le premier membre est précisément la forme sesquilinéaire associée a I’équa-
tion de Q, et la tangente est la polaire du point de contact.

Cette remarque associée aux propriétés d’alignement montre que quatre
points alignés sur Q ont des tangentes concourantes suivant un faisceau symé-
trique. Ces quatre tangentes recoupent d’ailleurs Q en quatre points alignés.

D’autre part, la racine A = 0 est dans ce cas une racine au moins triple,
le contact de la tangente avec la courbe est au moins triponctuel, et la courbe
Q est totalement inflexionnelle c’est-a-dire que tous ses points sont d’in-
flexion.

Les points pour lesquels il y a réciprocité polaire sont ceux dont les
coordonnées sont des entiers de Gauss: a + bi (ou a, b sont des restes
modulo 3 et i* = — 1). Il y a 91 tels points dont 28 sont sur la courbe O,
la tangente ayant alors un contact quadriponctuel, et il y en a 63 qui n’appar-
tiennent pas a Q. Une étude approfondie de cette question et des fonctions
modulaires en caractéristique trois ') rapproche ces deux nombres de la
détermination des 28 bitangentes et des 63 familles de coniques quadritan-
gentes, donnée par F. Klein dans son étude de la quartique canonique en
géométrie complexe.

1) Cf. Luc Gauthier: L’invariant modulaire dans la géométrie sur un corps de caractéristique trois. Journal
de mathématiques pures et appliquées 1957, p. 117.



— 135 —

La détermination de la tangente courante & la quartique totalement
symétrique Q, associée a I’homomorphisme d’élévation au cube, montre
que 1’équation tangentielle de Q est

ur 0t +wt =0

cette courbe est donc autoduale.

D’un point P quelconque du plan on méne quatre tangentes a Q, for-
mant un faisceau symétrique: leurs contacts sont alignés sur la semipolaire
de P. Lorsque P est sur la quartique Q, sa semipolaire passe par P et est
tangente & Q en un point P’: le faisceau est alors formé de PP’ triple et de la
tangente en P simple.

Comme la quartique Q ne comporte aucune singularité ponctuelle, elle
est de genre 3. En géométrie projective complexe les quartiques de genre 3
sont de classe 12. Nous rencontrons ici, pour la seconde fois, le fait qu’en
géométrie sur un corps de caractéristique p les propriétés tangentielles sont
profondément différentes de celles de la géométrie complexe classique.
Dans la théorie des coniques, pour p = 2 nous avons trouvé que ’enveloppe
des tangentes n’est pas du tout la conique elle-mé&me, mais le nucléon de
la conique, qui est de classe 1. Dans la présente étude, en caractéris-
tique p = 3, la quartique Q est bien P'enveloppe de ses tangentes, mais le
point caractéristique d’une tangente:

X =u Y = 93 4 w3

Il

n’est pas le point de contact, puisque

u = xp v = yg w = z
C’est le point déduit du point de contact par ’homomorphisme x — x°:
c’est le tangentiel du point de contact.
Nous verrons plus loin comment peut €tre élaborée non seulement la
géométrie tangentielle, mais toute la géométrie infinitésimale.

III. QUELQUES QUESTIONS DE GEOMETRIE ALGEBRIQUE

Pour rester fidele au but que je me suis proposé, je me bornerai ici
indiquer quelques théorémes classiques de la géométrie complexe qui perdent
leur validité¢ en géométrie sur un corps de caractéristique p.

Nous avons montré, comme conséquence de 'homomorphisme fonda-
mental, qu’il n’y a pas, en géométrie sur un corps de caractéristique deux,
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de faisceaux involutifs, mais qu’en revanche il existe des faisceaux de droites
doubles:

y:i—Ix* =0
Plus généralement, sur un corps de caractéristique p
yP — Ax?P =0

représente un faisceau linéaire de droites p-uples.

Le théoréme classique de Bertini assurant que la courbe générale d’un
systeme linéaire privé de composante fixe ne peut avoir de point multiple
variable est donc essentiellement 1ié & ’absence d’extensions inséparables
et appartient au seul domaine de la géométrie sur un corps de caractéris-
tique zéro (ou infinie, suivant les notations du lecteur).

La quartique totalement symétrique que nous avons présentée en géo-
métrie sur un corps de caractéristique 3 fournit, elle aussi, en tant que courbe
totalement inflexionnelle, un contre-exemple au théoréme complémentaire
de Weierstrass: Le théoréme des lacunes, dont on peut donner une démons-
tration valable en toute caractéristique, affirme que toute place d’une courbe
de genre g peut étre I'unique pdle d’une fraction rationnelle définie sur la
courbe, I’ordre de multiplicité de ce pdle prenant toute valeur entiére, a
part g lacunes inférieures a 2g. Le théoréme complémentaire affirme que
sauf en un nombre fini de places exceptionnelles, les lacunes sont 1, 2, ..., g.

Pour une courbe de genre g = 3, le modéle canonique est une quartique
plane; en un point ordinaire les lacunes sont 1, 2, 3: les points exceptionnels
de Weierstrass sont les points d’inflexion. La quartique totalement symé-
trique Q admet tous ses points comme points d’inflexion, donc comme
points exceptionnels de Weierstrass. Il est d’ailleurs facile de vérifier que les
lacunes sont 1, 2, 4 sauf lorsqu’on choisit 'un des 28 points de la configura-
tion de réciprocité, pour lesquels les lacunes sont 1, 2, 5.

Considérons maintenant, dans un espace projectif a trois dimensions,
sur un corps de caractéristique trois, la surface

xy? + yzd 4z + x> =0

c’est une vari¢té hermitienne, dont nous allons obtenir une représentation
paramétrique rationnelle en posant:

z = ux

y + ut = vx
On obtient, effectivement



y = —vuv®+1)
z =W’ —1)
t = v +u’)

Comme u est défini par son cube, il a, pour un point donné, une valeur
unique: cette représentation rationnelle biunivoque ne peut cependant pas
étre modifiée en une représentation birationnelle, car une surface du qua-
triéme ordre sans singularité a tous ses genres égaux a 1. Nous obtenons
ainsi un contre-exemple au théoréme classique de Castelnuovo relatif aux
surfaces rationnelles.

Les variétés hermitiennes fournissent des exemples en toute dimension
(exception faite des courbes) de variétés admettant des représentations

rationnelles biunivoques, mais non birationnelles, avec des genres non
bornés.

IV. LA GEOMETRIE INFINITESIMALE

Nous avons rencontré, en géométrie sur un corps de caractéristique
trois, une quartique dont tous les points sont inflexionnels. C’est un exemple
de courbe dont tous les points sont singuliers du point de vue tangentiel.
Le fait, que nous avons rencontré également, que I’enveloppe des tangentes
a une courbe n’est pas la courbe elle-méme, montre, Iui aussi, la nécessité
de préciser les fondements de la géométrie infinitésimale.

a) 11 faut d’abord donner une signification claire aux notions de voisi-
nages d’un point sur une courbe (plus généralement sur une variété). C’est
une question de nature topologique, et tant que ’on considére les points
d’une courbe a coordonnées prises dans un corps fini, ils forment un en-
semble discret qui n’est naturellement muni que de la topologie discréte.
Mais, deés que I’on effectue des extensions infinies du corps de base, c’est-a-
dire dés que l'on associe a une courbe la connaissance de son équation,
on peut associer a chaque point des représentations paramétriques locales,
et définir des voisinages de tous ordres.

Soit @ une coordonnée quelconque d’un point. On la remplace par la
série formelle

X =a4at+..+al"+ ..

qui admet pour spécialisation a, lorsque ¢ = 0. Les coefficients successifs
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de la série seront déterminés par un processus récurrent, qui est justifié
par une topologie trés simple dont on munit ’anneau des séries formelles.
On sait que 'on appelle ordre w d’une série formelle le numéro du premier
coefficient non nul. Cet entier associé a la série posséde, vis-a-vis des opé-
rations sur les séries, des propriétés valuatives trés simples, de sorte que
Pon définit un systéme dénombrable de voisinages de zéro, en appelant
n-€me voisinage de zéro I’ensemble V, des séries formelles d’ordres

w=>=>n+1
Ces voisinages sont emboités, et transportés par translation dans tout
I’espace vectoriel des séries formelles. Dans la topologie ainsi définie, la
limite de ¢” pour n augmentant indéfiniment est zéro, et on dispose ainsi
d’une technique tout a fait analogue a celle classique des développements

limités, pour écrire que le premier membre d’une équation appartient a
un voisinage de zéro donné a priori.

b) Voici, a titre d’exemple 1’étude du contact, en géométrie sur un corps
de caractéristique deux, de la cubique

y2z = x3

avec une conique. La cubique admet le point R (0, 0, 1) comme point singu-
lier et le point 7 (0, 1, 0) comme point d’inflexion. La conique sera définie
paramétriquement :

X = Xo + X1t + x,t°

y = Yo + yit + y,t?
z = zg + 24t + z,t°

le point (x, ¥, zo) €étant un point courant de la cubique. Les coefficients
des puissances successives de ¢ dans I’équation d’intersection sont

YoZo + Xo
Yozy + Xoxq

y(z)Zz + )’%Zo + x(2)x2 + x%xo
yizi + X3

V3zo + yiz, + X3Xo + X1x,
V3Zy + X3%,

2 3
Y2z, + X3



— 139 —

L’équation

Y2z +x5x =0
est I’équation de la tangente a la cubique au point courant: cette tangente
passe par le point fixe I ou elle recoupe la cubique. On voit ainsi que les
coniques qui ont, au point considéré, un contact quadriponctuel avec la
cubique, ont pour nucléon I:

xl = Zl = 0
La conique osculatrice a pour équation
‘ 2 2 2
x2Xgzo + V225 + 22y + xzx5 = 0

elle admet avec la cubique un contact 6-ponctuel.
En géométrie sur un corps de caractéristique deux, la cubique a point de
rebroussement admet tous ses points simples comme points sextactiques.

c¢) Jai défini 1) un procédé de transformation des équations, que j’ai
appelé le « perfectionnement », et qui a ’avantage de présenter I’étude d’une
variété algébrique sous une forme tout a fait analogue a I’étude d’une fonc-
tion polyndme. Voici, en nous limitant a la géométrie affine plane, en quoi
il consiste:

Considérons un polyndome a deux variables f (x, y), a coefficients dans
un corps K parfait, de caractéristique p. Lorsqu’il est exprimé au moyen de
ses monomes

f(x,y) = ZMkh = Zakh xky*
I’homomorphisme fondamental fournit sa puissance p-€éme
F=f =QM?=)>)YM? = >Yalxr*yr
sous forme d’un polyndme par rapport a
¢ = xP n o=y’

a coefficients dans K. La réciproque est évidente puisque dans K parfait
les coeflicients ont une racine p-éme. Cette propriété s’étend sans difficulté
aux fractions rationnelles.

Revenons alors au polyndome

f(xa y) = Zakhxkyh

1} Lgc Gauthier_: Géométrie inﬁnitésimale des courbes algébriques planes ou gauches sur un corps de
caractéristique p, Séminaire P. Dubreil et Ch. Pisot, décembre 1955, exposé 7 (Faculté des Sciences de Paris).
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et modifions les exposants modulo p, par exemple en choisissant comme
systéeme de représentants les entiers 0, 1, ..., p — 1:

k =pq +a

h =pq" +B

cecl nous permet de mettre f sous la forme

FG,y) =3 (X awdin")x*yP = 3 A, px*y*
B 4,9
c’est-a-dire sous la forme d’un polyndme a exposants pris dans les restes
modulo p, les coefficients étant des polyndmes en ¢ et 5.
Cette propriété s’é¢tend immédiatement aux fractions rationnelles

qui peuvent €tre écrites sous forme de polyndmes a exposants pris dans les
restes modulo p, les coefficients étant rationnels en ¢ et #.

Lorsque le choix des représentants pris comme exposants est précisé,
la représentation est unique et il en résulte qu'une condition nécessaire et
suffisante pour qu’une expression ait sa différentielle identiquement nulle est
qu’elle appartienne au sous-corps des puissances p-émes.

Pour cette raison, nous désignerons désormais les puissances p-émes
sous le nom de quasi-constantes.

Considérons alors, maintenant, une quantité z, algébrique sur le corps K,
et son polyndme minimal f(z). Lorsqu’on écrit

Pl = A 2P L+ A,

ou les A4; sont des polyndmes en { = z?, le premier coefficient non nul 4,
ne peut étre le dernier car

ffm=20
est contradictoire avec le fait que f est minimal. En dérivant p —2 fois
Zk-l fp—l
on obtient
fg = — Az + Apsy

ol g est un polyndme de I’idéal engendré par fet f".
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L’équation
f(z) =0

entraine que z est rationnel en (.
Cette propriété de cloture est importante car elle montre que toute
- courbe

F(x,y) =0
peut, en un point ou Fy n’est pas nul, étre mise sous forme résolue

y = P(x;&,n)

dans laquelle le second membre est un polyndme de degré p-1 au plus en x,
a coefficients quasi-constants.

Cette propriété s’étend d’ailleurs aux variétés de toutes dimensions,
et aux homomorphismes

x—> & =x1

(g=p") engendrés par 'homomorphisme fondamental.

d) Voici un exemple simple d’application de la méthode de transforma-
tion précédente:

Sur un corps de caractéristique trois I’équation affine d’une courbe peut
€tre mise sous la forme

y = Ax* + Bx + C

ou 4, B, C sont des quasi constantes: Si 4 est identiquement nulle, la courbe
a tous ses points simples comme points d’inflexion. Si A n’est pas identique-

ment nulle, on obtient les points d’inflexion en coupant la courbe proposée
par

A =0

et comme A4 est un cube, les points obtenus ont chacun une multiplicité
d’intersection multiple de 3 1).

C’est ainsi que la cubique

o 1) Dans Pétude des cubiques, A est le cube d’une forme linéaire. La classification projective se présente
ainsi: Si 4 est identiquement nulle, la cubique est totalement inflexionnelle (cf. exemple qui suit).

) Si A = O est une drgite sécante ou tangente a la cubique, contenant éventuellement un point double,
il y a trois, un ou zéro point d’inflexion (cf. exemple du §e).

. Le cas ou il y a un seul point d’inflexion, de multiplicité 9, correspond a I’annulation de I’invariant de
asse.
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peut, sauf & l'origine qui est un point singulier, étre écrite

Sy =1
y est une quasi constante: les tangentes a la courbe sont les droites
Yy =JXo
et I’intersection
(x=x0)° =0 .

montre bien que tous les points simples sont inflexionnels.
En géométrie projective, la quartique qui a trois rebroussements, a pour
€quation

x*y? + 3?22 + z2%x* = 0
en faisant z = 1 et en multipliant par xy, on obtient ’équation « perfec-
tionnée »:
nx + &y +<n =0

qui montre que (pour p = 3 encore), cette courbe est, elle aussi, totalement
inflexionnelle.

e) En géométrie sur un corps de caractéristique trois, les cubiques a
point de rebroussement ne forment pas une seule famille projective: nous

venons de montrer que la courbe
J?Z == x3

est totalement inflexionnelle. Considérons ensuite la cubique
4+ xPy +x =0
qui admet un point singulier unique a Iorigine
4 3

(y—x)* =x* —x

Pour former I’équation « perfectionnée », élevons les deux membres au
carré

(y—x2)3(y—x?) = x* + x7 +x°
c’est-a-dire

m—E)y =nx* + &x + &
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Les points d’inflexion sont obtenus en annulant le terme du second degré
n =70

mais nous avons déja exclu l’origine comme point singulier.

La cubique considérée n’admet aucun point d’inflexion véritable. En
revanche elle admet un point de rebroussement d’une nature plus subtile que
ceux de la géométrie classique : il ne vérifie pas le théoréme de Puiseux.

Mais je ne veux pas, dans ce travail qui vise seulement & présenter
quelques aspects de la géométrie sur un corps de caractéristique p, entrer
dans I’étude, d’ailleurs délicate, des singularités des courbes et variétés
algébriques.

f) Sans donner non plus de développement au sujet d’une étude dont
je me suis occupé récemment, je voudrais cependant signaler que la géomé-
trie infinitésimale en caractéristique p, dispose actuellement de moyens suffi-
sants pour qu’on puisse analyser complétement la structure d’une variété
en un point, et lui associer un repére projectif mobile intrinséquement défini.
Je renverrai seulement, sur ce sujet, & deux publications en cours, ’'une a
Bologne (Luc Gauthier: Adaptation d’une méthode de Bompiani a la géomé-
trie infinitésimale sur les corps de Galois, Colloque de géométrie différen-
tielle, fin septembre 1967), I’autre dans le volume jubilaire dédié & M. Lucien

Godeaux (Luc Gauthier: Géométrie projective infinitésimale sur les corps
de Galois).

V. ESSAl DE GFOMETRIE METRIQUE

Lorsqu’on dispose d’une géométrie projective, et par conséquent, en
faisant choix d’un hyperplan a I’infini, d’une géométrie affine, il vient natu-
rellement 4 I'idée d’introduire une forme quadratique définie positive, a
laquelle on associera une distance, pour fabriquer une géométrie métrique.

Malheureusement, dans les corps finis I’absence de relation d’ordre per-
mettant de définir le qualificatif « positif » détruit cet espoir.

Cependant, dans I'intention de donner des applications en astronomie,
a Iétude des amas d’étoiles, P. Kustaanheimo 1) et G. Jdrnefelt 2), ont
montré que pour des valeurs particuliéres, (mais non bornées) de la carac-
téristique p, il est possible d’extraire de I’espace affine construit sur le corps

1) Kustaanheimo: One the fundamental prime of a finite world. Annales Academiae scientiarum fennicae,
1952.

2) Jarnefelt: Reflections on a finite approximation to euclidean geometry... Ibidem 1951.
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des restes modulo p un domaine (dont le nombre des points pourra, avec p,
croitre indéfiniment) que I'on peut munir d’une structure métrique eucli-
dienne.

Je voudrais indiquer rapidement ici les idées directrices qui ont fait le
succes de cette étude si originale.

On commence par donner du qualificatif « positif » une signification
compatible avec la seule structure multiplicative du corps des restes modulo
p. On sait que, en se bornant au cas de p impair, et au groupe multiplicatif
des restes non nuls, la théorie de la racine carrée conduit a considérer deux
classes d’entiers:

a) les restes quadratiques, c’est-a-dire ceux a pour lesquels la congruence

x> =a mod. p

admet des solutions.

b) les non-restes quadratiques, c’est-a-dire ceux b pour lesquels 1la
congruence

x> = b mod p
n’a pas de solution.

Chaque classe contient le méme nombre d’éléments.

Le produit de deux restes est un reste. Le produit d’un reste et d’un
non-reste est un non-reste. Le produit de deux non-restes est un reste.
L’application qui, a tout élément non nul du corps, fait correspondre le
symbole -+ si c’est un reste, et le symbole — si c’est un non-reste, a donc les
qualités multiplicatives de la « regle des signes ».

Il faut ensuite transporter cette qualification, par translation, dans le
domaine, de fagon a pouvoir dire que I’inégalité

x>y

signifie que x — y est un reste quadratique, modulo p. Comme la somme de
deux restes n’est pas toujours un reste, c’est ce point qui introduit les limi-
tations du domaine de validité. Kustaanheimo a montré que si @ est le
produit des k premiers nombres premiers impairs, en choisissant

p= —1mod 8w
il existe une « chaine euclidienne »

-M,...,—2,—-1,0,1,2,..., + M
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de 2M 4 1 entiers tels que, modulo p, tous les nombres 1, 2, ... M soient
des restes quadratiques et tous les nombres — 1, — 2, ... — M soient des
non-restes. Le pavé affine formé des points dont les coordonnées sont prises
dans une telle chaine euclidienne est alors susceptible d’étre muni de la
métrique dans laquelle la distance est donnée par la régle de Pythagore.

Je renverrai, pour le développement de cette question, aux auteurs eux-
mémes.

(Achevé a Novosibirsk le 9 février 1968 )
L. Gauthier
Professeur a la Faculté
des Sciences de Paris
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