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for some /10>1. Accordingly, if the conditions (6.6) and (6.9) hold then

(6.4) implies (6.6.) as well as the dominated variation of l—F and 1 — G.

Our results permit various paraphrases of the sufficient conditions, and

also of the ratio limit theorem itself. That (6.6) by itself is not sufficient is

shown by (6.36); without (6.9) certain subsequences may exhibit the pattern
of slow variation, and the conclusion (6.5) must be replaced by a weaker

conclusion of the form (6.3b).

1. On the tails of infinitely divisible distributions

To illustrate the usefulness of the notion of dominated variation in

probabilistic contexts we prove the following

Proposition. Let H stand for an infinitely divisible probability distribution

with Lévy measure M {dx}. If M varies dominatedly at +co then

(7.1) 1 - H{x) ~ M{(x, oo)} x-> + oo

in the sense that the ratio of the two sides tends to unity at all points of
continuity. (A very special case involving regular variation is mentioned
in [1], p. 540.)

Proof. We shall show that the general proposition follows easily from
the special case where M is supported by the positive half axis and has a

finite mass p. In this case

(7.2) M { (x, oo) } p [l —T(x)] x > 0

where F is a probability distribution on (0, x), and H reduces to the compound
Poisson distribution given by

00 Lin

(7.3) H (x) e'» Y - Fn* (x) x > 0.
n=0"!

We proceed to prove the assertion (7.1) for distributions of this form
assuming that l—F varies dominatedly. Note that Fn* is the distribution
of the sum Sn ^+ ...+2^ of n mutually independent random variables
with the common distribution F. Since these variables are positive, the
event {^n>x} occurs whenever at least one among the n variables exceeds x,
and so

(7.4) 1 - F"* (x) > n[1-F(x)] - (fi\ [1 -F(x)]2
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by an easily verified inequality named after Bonferoni. Substituting into
(7.3) it follows that

(7.5) 1 - H(x) >n[1 -Fix)] [1 -F{x)f

M { (x, oo) } [1 +<?(!)] 00

To obtain an appraisal in the opposite direction choose 0<e< - and

note that the event {Sn>x} cannot occur unless either at least one among
the variables Xl9 Xn exceeds (1 — e) x, or at least two among them exceed

ex/n. Thus

(7.6) 1 — Fn* (x) < n [1 — F((l — e)x)] + [1 —F(ex/n)]2

To apply the argument used in (7.5) we would have to know that the ratio
of the two brackets on the right tends to 0 as x-> oo. Because of the assumed

dominated variation of 1— F this is true for every fixed n, but to make
the ratio <<5 we must have sx/n sufficiently large, that is, n^ax, where a
is an appropriate constant. On the other hand, if r is the smallest integer
exceeding ax and if ax>2ji we have trivially

(7.7) £ ^ < 2 ("Y < 2 (fT
n=r nl\rjand the right side tends to zero faster than any power of x ~1. In view of

the dominated variation of 1—F this implies that the quantity (7.7) is

o (1 —F(x)), and this together with (7.6) shows as in (7.5) that

(7.8) 1 - H(x)<.n[1 + o(l)).

This proves the assertion for distributions of the form (7.3).

For the general case we represent the Lévy measure M as a sum of
three measures supported by the intervals (1, oo), [—1, 1), and (— oo, 1],

respectively. This puts FI in the form of a triple convolution, and so we may
conceive of H as of the distribution of a sum X+F+Z+const. of three

infinitely divisible mutually independent random variables such that X>0,
Z<0, and Y has a Lévy measure supported by [—1, 1]. It follows that Y
has moments of all orders, and hence for arbitrary 2>0 and n

(7.9) P { I 71 > ex } o (xn) x -> oo
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Because of the assumed dominated variation M {(x, oo)} decreases more
slowly than a certain power x~a, and hence the quantity (7.9) is o (M {(ax,oo)}
for any fixed a>0. Since Z<0 and X has a distribution of the form (7.3)

we conclude that

(7.10) P{X + Y + Z > x} <P{X > l-s)x} + P{Y> ex} ~

- M{((1 -s)x, oo)}

On the other hand,

(7.11) P{X + Y + Z > x}> P{X > (l+e)x} -P{Y + Z> - ex}

and the last factor tends to 1 as x->oo. The probabilities on the left are
therefore ~M {(x, oo)}, as asserted.

REFERENCES

[1] Feller, W., An introduction to probability theory and its applications, vol. IE New
York, 1966

[2] On regular variation and local limit theorems. Proc. of the Fifth Berkeley Sym¬
posium on Mathematical Statistics and Probability, 1966, vol. II, part 1, pp. 373-388.

[3] Karamata, J., Sur un mode de croissance régulière. Mathematica (Cluj), vol. 4 (1930),
pp. 38-53.

Reçu le 28 Mai 1968)
William Feller

Princeton University and
Rockfeller University.


	7. ON THE TAILS OF INFINITELY DIVISIBLE DISTRIBUTIONS

