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Again, if it is known that Rv is bounded away from 0 then (4.5) shows that

(4.2) implies (4.1).
We have thus proved the

Corollary. If U is of dominated variation with exponent y<p then

(4.1 implies (4.2). Similarly, if Up is of dominated variation with exponent
— q where q<p, then (4.2) entails (4.1). (In each case both functions are

of dominated variation.)

5. Ratio limit theorems

Let U and V be non-decreasing unbounded functions, and suppose that
L is slowly varying regularly varying with exponent 0).

Definition. We shall say that U and V are L-equivalent and write

(5.1) UL

if the ratio UL/V tends to 1 at all points of continuity.
More precisely, it is required that for each e>0 and fixed A> 1

(5.2) (l-s)L(0 U(t/X) < V(t) < (1 + e) L(t) U (tX)

for all t sufficiently large.

Theorem 4. Let U be of dominated variation. In order that there exist
a slowly varying function L such that (5.1) holds it is necessary and sufficient
that

(5.3) Ruit) — Rv(t) - 0 boundedly.

Needless to say, Rv and yfv are defined by analogy with Rv in (1.5)
and fv in (3.2).

Proof, (a) Necessity. Assume (5.1) and suppose that U satisfies the
basic inequality (2.2). Obviously the slow variation of L implies that for t
sufficiently large and all x>l

V(fx)

Tw < C x'

for any pair of constants C >Candy' > y. Thus is of dominated variation,
and since p>y the function Vp exists.
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Let tn-+ oo in such a way that the measures associated with U (tn-)/U (tn)
tend (in finite intervals) to a limit measure m. The relation (5.1) implies
obviously that the measures associated with V (tn-)jV(tn) tend to the same
limit m. Thus when t runs through {/„} we have for fixed x>\

Up(t)-Up(tx) ; U (tdy) ; _p ^(5.5) \ y p > \ y p m (ay),
u(t)rp iy u(t) ly y yj

and the same relation holds with U replaced by V. But (5.4) implies that
this passage to the limit is uniform as x-»oo; it remains valid also for
x=co with the right side being finite. We have thus shown that Rv(tn) —

— Rv (t„)->0. But the tn may be picked as elements ofan arbitrarily prescribed

sequence, and so the limit relation in (5.3) holds pointwise for an arbitrary
approach t-+ oo. Now we know that the dominated variation of U and V
implies the boundedness of both Rv and Rv, and the condition (5.3) holds
true.

(b) Sufficiency. The variation of U being dominated, Rv remains
bounded and so (5.3) implies the boundedness of Rv and hence the dominated

variation of V. The calculation of part (ii) in section 3 show that

s-'-'Uis)s-'^Vis) p[ 1 1

(5.6) -if"—L
t |_1 + RSv(s) /F(s) t |_1 + Rv(s) 1 + Rv(s)

The expression within brackets is in absolute value bounded by li?^^) —

Rv (j)|, and therefore tends to 0 boundedly. Integrating between t and tx> t

we conclude therefore that

Jv (0 ^v (tx)
(5.7) log - 0.V ^ *Sa(tx) Sv(t)

In other words, the ratio ßulßv varies slowly, and therefore we can put

(5.8) Sv(t) L(f)Sv(t)

where L varies slowly.
We now recall the inequality (3.14) which implies that to each X>\

there exists an rj < 1 such that

(5.9) Svßt) < rj (t)

for all t sufficiently large. From (5.8) we conclude therefore that
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r ^vif) ^v M
(5.10) lim -

[^*u(0 ~ ^ i/(^0] -^(0

L(t)Jv(t) -L(Xt)Jv(Xt)
1im

L(t)Jv(t)-L(t)Jv(M)
But the fraction on the left lies between

V(Xi) V (t)
and

U (t) L(t) U (It) L(t)

and so (5.1) is true.

6. Application to Tauberian theorems

If the measure U varies regularly at infinity, then its Laplace transform co

varies regularly at the origin. More precisely, Karamata's now classical

Tauberian theorem states that for any a>0 and slowly varying function L
the two relations

(6.1) U(x) ~xaL(x) co(X) ~ F (a 4- I) X"a L{X"1)

imply each other; here v-»oo but A->0. [The sign ^ indicates that the ratio
of the two sides tends to 1.] For an example of a probabilistic application
suppose that

(6.2) U(x)J
0

is the truncated pth moment of a probability distribution F on the positive
half axis. For simplicity let p stand for a positive integer. Then Up (x)

1 —F(x) and co (—1 )p(f>(p) where cj) is the Laplace-Stieltjes transform

of F. If co varies regularly in accordance with (6.1) then Karamata's
relation (1.8) implies that

(6.3a) 1 — F (x) ~ xa~p L(x) when a < p
p — a

(6.3b) 1 — F(x) o(xaL(x)) when a p

(Note that necessarily 0<a <p because the measure F is finite.) In other
words, the behavior at the origin of the derivatives of the Laplace transform
determines the behavior of the tail 1 —F(x), and vice versa.
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