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4. Other conditions

By theorem 1 both Uand Up vary dominatedly whenever r>0 and r< oo.

The next theorem gives even simpler criteria for dominated variation that
remain applicable in the limiting situations r 0 and r oo.

Theorem 3. If there exists a number £>1 such that

(4.1) lim inf —- > 1

C/(0

then Up varies dominatedly. Similarly the relation

(4.2)
«„»)

implies the dominated variation of U.

Proof. Clearly

^Up(t) 7,(ffl] U(tQ - U(t)

U(t)U(t)(7(0

When the right side is bounded away from 0 this implies r>0, and so Up
varies dominatedly by theorem 1.

We can go a step further. If, besides (4.1), it is known that U varies

dominatedly with exponent y<p, then t~p U(t)/Up(t) is bounded away
from 0, and hence the second inequality in (4.3) implies that

UM) - UJtO
(4.4) lim inf — ^- > 0V

Up(t)

This is equivalent to (4.2).

Similarly
Up(t) - Up(tO ^ ^_p U(tQ - U(t)

(4 5) " v yx ^ < tv ;
up (to up(to

O u(to - u(t)
Rv(tO U (to

The second fraction on the right does not exceed 1, and so (4.2) ensures

that Rv (tO remains bounded, and hence that U is of dominated variation.
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Again, if it is known that Rv is bounded away from 0 then (4.5) shows that

(4.2) implies (4.1).
We have thus proved the

Corollary. If U is of dominated variation with exponent y<p then

(4.1 implies (4.2). Similarly, if Up is of dominated variation with exponent
— q where q<p, then (4.2) entails (4.1). (In each case both functions are

of dominated variation.)

5. Ratio limit theorems

Let U and V be non-decreasing unbounded functions, and suppose that
L is slowly varying regularly varying with exponent 0).

Definition. We shall say that U and V are L-equivalent and write

(5.1) UL

if the ratio UL/V tends to 1 at all points of continuity.
More precisely, it is required that for each e>0 and fixed A> 1

(5.2) (l-s)L(0 U(t/X) < V(t) < (1 + e) L(t) U (tX)

for all t sufficiently large.

Theorem 4. Let U be of dominated variation. In order that there exist
a slowly varying function L such that (5.1) holds it is necessary and sufficient
that

(5.3) Ruit) — Rv(t) - 0 boundedly.

Needless to say, Rv and yfv are defined by analogy with Rv in (1.5)
and fv in (3.2).

Proof, (a) Necessity. Assume (5.1) and suppose that U satisfies the
basic inequality (2.2). Obviously the slow variation of L implies that for t
sufficiently large and all x>l

V(fx)

Tw < C x'

for any pair of constants C >Candy' > y. Thus is of dominated variation,
and since p>y the function Vp exists.
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