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3. ONE-SIDED VERSION OF THE KARAMATA RELATIONS

From now on U will stand for a non-decreasing function and p>0 will
be a fixed number such that the integral U, converges. Only the case

U (0) = oo is of practical interest. We adhere to the notation (1.5) for Ry
and put

(3.1) r = lim inf Ry (1) , r = lim sup Ry (1).

We shall also use the notation

(3.2) Fy(®) =y 7 U dy.

THEOREM 1. For U to vary dominatedly it is necessary and sufficient that
r<oo. Similarly U, varies dominatedly iff r>O0.

More precisely : The relation (2.2) with y<p entails

(3.3) Ry(H) <4 t >t
with
C
(3.4) A= 1,
p—7

Conversely, (3.3) implies (2.2) with

A
3.5 C=4+1, = :
(3.5) V=P
In like manner, if
(3.6) Ry(t)y >n>0, t >t
then
U, (tx)
(3.7) P > Kx71, x>1,1t>t,
U, (1) 0
with
(3.8) K=—"_ P
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Conversely, if (3.7) holds with g<p then

(3.9) . K(p—q)

-7 Kqg+(1—-K)p’

(Note that necessarily K<(1 as can be seen letting x—1 in (3.7). On
replacing ¢ by £x~! it is seen that (3.7) not only asserts dominated variation
of U,, but implies uniformity away from the origin.)

Proor. (i) Using integration by parts and the notation (3.2) it is seen
that the definition (1.2) of U, leads to the identity

(3.10) pIs(t) = U, (1) + 72 U(f)

valid at all points of continuity. If (2.2) holds with y<p we conclude for
t>t,

(3.11) U,(t) +tTPUBD<Cp-U®fy " (ytydy =

b
p—Y
and so (3.3) holds with A defined in (3.4).
(i) Assume (3.3). Then by (3.10)

= C

7P U (D)

(3.12) ptP I, () <(A+1) U@
or

sTP LU (s) p 1
(3.13) o m p .
Ly () A+1 s

Integrating between ¢ and tx>¢ we get

Iy (1) - P

3.14 I
(3.14) B X)) A1

log x , t >t .

Thus from (3.12)

(3.15) (A+Dt7PU®{) = pFy(t) = pFy(tx) xP/ATD
and by the definition (3.2)

(3.16) pFy(x) > U(tx) (tx)"P.
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Accordingly, (2.2) holds with C and y given in (3.5). (This part of the theo-
rem was proved slightly differently in [2].)
(iii) Assume (3.6). As in the last part we conclude

- jU(t)< D
Fox) 4+ 1

(3.17) | log x, x>1,1t>1,.

A repeated use of (3.10) now shows that
(3.18) Up(t)<pfy(t)<pr(tx)-xP/(”“) -
= yP/(+1) [Up (tx) +(tx) ™ U(tx)] .

From (3.6) with ¢ replaced by #x it is seen that the expression within brackets
is <(1+x" " U, (tx), and so the assertion concerning (3.7) is true.

(iv) Assume (3.7) with g<p. From the definition (1.2) of U, we get
by Fubini’s theorem

t
(3.19) plyrtU,(»dy = U® +t2U,®)
0
which proves that the integral on the left converges for all #>0. Let B stand
for the value of the left side when ¢ = ¢,. For y>1t, we can apply (3.7) to
conclude

(3.20) U@ +t*PU,(H) <B + pK~ ' U, (1 jtyp‘l (t/y)idy <

0

<B+ T KU,
P —4q
Divide this inequality by U (¢) and let t— 0. If U (f)—c0 we get the asser-
tion (3.8). If U (¢) remains bounded there is nothing to be proved because

(3.7) implies that ¢? U, (f) increases at least as fastas /7”9, and hence r = o
whenever U is bounded.

Note. Our result lack the perfect symmetry of the original Karamata
relations. Starting from (2.2) we get (3.3)-(3.4). However, when we apply
the converse with these given values we get (2.2) in the weaker form with y
replaced by a constant y' >y. Examples given in [2] show that, in an obvious
sense, this result is the best possible.
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