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3. One-sided version of the Karamata relations

From now on U will stand for a non-decreasing function and p>0 will
be a fixed number such that the integral Up converges. Only the case

U (oo) go is of practical interest. We adhere to the notation (1.5) for Rv
and put

(3.1) r — lim inf Rv(t), r lim sup Rv (t)

We shall also use the notation

OO

(3.2) $ y-p-1IJ(y)dy.t

Theorem 1. For U to vary dominatedly it is necessary and sufficient that
r< oo. Similarly Up varies dominatedly iff r>0.

More precisely : The relation (2.2) with y<p entails

(3.3) Rv{i) < A t>t0
with

(3.4) A Fl_1

p-y
Conversely, (3.3) implies (2.2) with

(3.5) C A + 1 y p.A + If
In like manner, if
(3-6) Rv (t) ^ rj > 0 t > t0

then

a7) »>!.'>'»
with

(3.8) n

t] + I ^
1
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Conversely, if (3.7) holds with q<p then

K(p-q)
(3.9) r> Kq +(1 -K)p
(Note that necessarily i£<l as can be seen letting x-*l in (3.7). On

replacing t by tx_1 it is seen that (3.7) not only asserts dominated variation
of Up, but implies uniformity away from the origin.)

Proof, (i) Using integration by parts and the notation (3.2) it is seen

that the definition (1.2) of Up leads to the identity

(3.10) pJv(t) Up(t) + rpU(t)
valid at all points of continuity. If (2.2) holds with y<p we conclude for
t>t0

CO

(3.11) Up(0 + t~pU(t) <Cp-U(t)Jy~'~ 1

t

c—^—rp 1/(0
p - y

and so (3.3) holds with A defined in (3.4).

(ii) Assume (3.3). Then by (3.10)

(3.12) ptpSv(t)<(A + l)U(t)
or

5-p"1t/(s) P 1

(3'13) -^sT>TTl-'s s>'»'

Integrating between t and tx>t we get

Jv (0 P
(3'14) log7^(âj ** JTT ,>'0'

Thus from (3.12)

(3.15) (A + l)rp U{i)> pJru(t)> pJv

and by the definition (3.2)

(3.16) pJv(tx) > U(tx) - (tx)~p
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Accordingly, (2.2) holds with C and ygiven in (3.5). (This part of the theorem

was proved slightly differently in [2].)

(iii) Assume (3.6). As in the last part we conclude

(3.17) log log x, jc > 1
& Sv(tx)>7 + 1

A repeated use of (3.10) now shows that

(3.18) Up(t)<pJv(t)<pSv(tx)-xp,<*+1)

xp'«+1)[Up(tx)+(txy* (tx)]

From (3.6) with t replaced by tx it is seen that the expression within brackets

is <(1 +rj~1) Up(tx), and so the assertion concerning (3.7) is true.

(iv) Assume (3.7) with q<p. From the definition (1.2) of Up we get

by Fubini's theorem

t

(3.19) pjy""1 Up(y)dyU (t) + t"
0

which proves that the integral on the left converges for all t > 0. Let B stand

for the value of the left side when t t0. For y>t0 we can apply (3.7) to

conclude

(3.20) £/(*) + f Up(t)<B +PK-1Up(t)j
' o

< B+ — K'11" U„(t).
p - q

Divide this inequality by U (t) and let t->co. If U (t)->co we get the assertion

(3.8). If U (t) remains bounded there is nothing to be proved because

(3.7) implies that tp Up (t) increases at least as fast as tp~q, and hence r — oo

whenever U is bounded.

Note. Our result lack the perfect symmetry of the original Karamata
relations. Starting from (2.2) we get (3.3)-(3.4). However, when we apply
the converse with these given values we get (2.2) in the weaker form with y

replaced by a constant yf>y. Examples given in [2] show that, in an obvious
sense, this result is the best possible.
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