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ONE-SIDED ANALOGUES OF KARAMATA'’s
REGULAR VARIATION #)

William FELLER

To the memory of J. Karamata
I. INTRODUCTION

The monotone functions studied in this paper are assumed to be defined
on (0, c0), and to be non-negative and right continuous. Point functions are
introduced for notational convenience only, but we are really concerned
with the associated measure which attributes value U (x) to the interval
[0, x] when U increases, and to (x, o) when U decreases to zero.

Karamata’s original theory of regularly varying functions has been
generalized in chapter VIII of [1] to measures. A monotone function U
is said to vary regularly at infinity with exponent o if

(1.1) lim —— = x*

for some o and each x>0. At first glance this definition appears to be
artificial, but it i1s motivated by the fact that if the limit on the left exists,
it is necessarily of the form x* Accordingly U varies regularly at infinity if,
and only if, as t— oo the measures U (tdx)/U () converge to a finite measure
in every finite interval. (Here, and in the following, convergence of meas-
ures 1s taken in the usual weak sense.) The function U varies regularly at
the origin if U (¢ ') varies regularly at infinity. From now on we omit the
qualification “ at infinity ”, and it will be tacitly understood that in our
passages to the limit the variable tends to oo.

With an arbitrary measure U on (0, c0) we may associate the truncated
moment functions

(1.2) U,(x) = [ y~ 2 U(dy)

* Work connected with a Project for research in probability theory at Princeton University. su orted
by the Army Research Office. v> SHPP
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and

(1.3) Z,(x) = [ y1U(dy)

defined whenever the integrals converge. These functions define new meas-
ures and they satisfy obvious identities such as

(1.4) U,(x) = [ y™P71Z,(dy).

For convenience of notation and exposition we shall from now on use
U = Z, as representative of the whole family {Z,} and formulate all theo-
rems in terms of U and U,. Various relations between the diverse Z, will
be implicit in our theorems. As a last piece of notation we introduce the
frequently occurring function

t? U, (1)
(1.5) R, (f) = T

The notion of regular variation was introduced, and achieved its greatest
success, in connection with Tauberian theorems. In recent years more
attention was paid to hitherto little known relations derived by Karamata
in [3] and connecting the asymptotic behavior of the various functions Z,
and U,. The basic theorems may be summarized as follows.

(i) Let U vary regularly with exponent o>0. Then U, exists for p>o
(but for no p<a). Furthermore

(1.6) lim Ry (1) = r

—0

exists, and r = <oo. If r>0 then U, varies regularly with exponent

p—a
o—p.
(i) Let U be such that U, exists for some fixed p>0 and varies regularly

with some exponent q<_0. Then the limit (1.6) exists, 0<r<Coo. If r<oo
then U varies regularly with exponent p-q.

(ili) Let the limit r exist. If 0<r< oo then both U and U, vary regularly
with exponents
¥ 1

and o0 — p = —
F+ 1 P P

(1.7) o« =p
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respectively ; hence
(1.8) U,() ~rt"?U(1).

If r = 0 then U varies slowly (« = 0) and U,(£) =0 (@ P U(9). If r= o0
then U, varies slowly and U (t) = o (¢* U, (1))

Thus except when either U or U, varies slowly regular variation is tied
to a relation of the form (1.8) and the existence of the limit (1.6) char-
acterizes regular variation.

Karamata considered only measures defined by densities. Simplified
proofs and extensions of his results can be found in [1]. In this book it was
shown that the measure theoretic version of Karamata’s relations introduces
coherence and unity in the theory of domains of attraction, and that it leads
to a substantial simplification of this theory. (In such connections U is
usually the truncated second moment of a probability distribution, and U,
is then the tail sum of this distribution.)

In [2] it turned out that various compactness arguments and local limit
theorems in probability do not depend on the full strength of regular varia-
tion, but only on a one sided version of it.

We now proceed to describe this generalization and to show that Kara-
mata’s relations carry over to a surprising extent. In section 4 we discuss
inequalities going in the opposite direction.

In section 5 we turn to ratio limit theorems. Roughly speaking, we show
that if two monotone functions U and V stand in the relation V = UL
with L slowly varying, then also V,~U, L. For regularly varying function
this is implicit in Karamata’s relation (1.8), but it is surprising that dom-
inated variation should suffice for the conclusion. Furthermore, we obtain
a necessary and sufficient condition for the ratio V/U to be slowly varying.
In section 6 these results are reformulated in the form of a Tauberian ratio
limit theorem.

To illustrate the way in which dominated variation occurs naturally in
probabilistic contexts we discuss in section 7 the asymptotic behavior of
the tails of infinitely divisible distributions. This section is independent of
the Karamata relations and may be read directly after section 2.
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2. DOMINATED VARIATION

We start from the following

DEFINITION. A monotone function U varies dominatedly if

" Uz _ : U1
im sup ——- < o0
p U0 in case
(2.1)
: U(t/2) .
lim sup <o incase U].
U (1)

This leads immediately to the

CRITERION. A non-decreasing U varies dominatedly if there exist cons-
tants C, vy, and t, such that

U (tx)
U (1)

(2.2) & Ox x>1,1t>1t,.

For non-increasing U the same criterion applies with x> 1 replaced by x<1.

Proor. The sufficiency is obvious. Assume (2.1) and choose ¢, and C
such that

U (21)

(2.3) 70

for t >ty .

Put y = Log, C. For x>1 define n by 2" ' <x<2". A repeated application
of (2.3) then shows that the left side in (2.2) is <C"<Cx".

Dominated variation of U may be described by saying that the measures
associated with U (t-)/U (t) form a sequentially compact family in the sense
that every sequence contains a subsequence converging on finite intervals
to a finite measure. As in the case of slowly varying functions, the occurrence
of limit measures that vanish identically on (0, co) introduces some lack
of symmetry. The supplementary condition (4.1) is designed to avoid this
anomaly.
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3. ONE-SIDED VERSION OF THE KARAMATA RELATIONS

From now on U will stand for a non-decreasing function and p>0 will
be a fixed number such that the integral U, converges. Only the case

U (0) = oo is of practical interest. We adhere to the notation (1.5) for Ry
and put

(3.1) r = lim inf Ry (1) , r = lim sup Ry (1).

We shall also use the notation

(3.2) Fy(®) =y 7 U dy.

THEOREM 1. For U to vary dominatedly it is necessary and sufficient that
r<oo. Similarly U, varies dominatedly iff r>O0.

More precisely : The relation (2.2) with y<p entails

(3.3) Ry(H) <4 t >t
with
C
(3.4) A= 1,
p—7

Conversely, (3.3) implies (2.2) with

A
3.5 C=4+1, = :
(3.5) V=P
In like manner, if
(3.6) Ry(t)y >n>0, t >t
then
U, (tx)
(3.7) P > Kx71, x>1,1t>t,
U, (1) 0
with
(3.8) K=—"_ P
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Conversely, if (3.7) holds with g<p then

(3.9) . K(p—q)

-7 Kqg+(1—-K)p’

(Note that necessarily K<(1 as can be seen letting x—1 in (3.7). On
replacing ¢ by £x~! it is seen that (3.7) not only asserts dominated variation
of U,, but implies uniformity away from the origin.)

Proor. (i) Using integration by parts and the notation (3.2) it is seen
that the definition (1.2) of U, leads to the identity

(3.10) pIs(t) = U, (1) + 72 U(f)

valid at all points of continuity. If (2.2) holds with y<p we conclude for
t>t,

(3.11) U,(t) +tTPUBD<Cp-U®fy " (ytydy =

b
p—Y
and so (3.3) holds with A defined in (3.4).
(i) Assume (3.3). Then by (3.10)

= C

7P U (D)

(3.12) ptP I, () <(A+1) U@
or

sTP LU (s) p 1
(3.13) o m p .
Ly () A+1 s

Integrating between ¢ and tx>¢ we get

Iy (1) - P

3.14 I
(3.14) B X)) A1

log x , t >t .

Thus from (3.12)

(3.15) (A+Dt7PU®{) = pFy(t) = pFy(tx) xP/ATD
and by the definition (3.2)

(3.16) pFy(x) > U(tx) (tx)"P.
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Accordingly, (2.2) holds with C and y given in (3.5). (This part of the theo-
rem was proved slightly differently in [2].)
(iii) Assume (3.6). As in the last part we conclude

- jU(t)< D
Fox) 4+ 1

(3.17) | log x, x>1,1t>1,.

A repeated use of (3.10) now shows that
(3.18) Up(t)<pfy(t)<pr(tx)-xP/(”“) -
= yP/(+1) [Up (tx) +(tx) ™ U(tx)] .

From (3.6) with ¢ replaced by #x it is seen that the expression within brackets
is <(1+x" " U, (tx), and so the assertion concerning (3.7) is true.

(iv) Assume (3.7) with g<p. From the definition (1.2) of U, we get
by Fubini’s theorem

t
(3.19) plyrtU,(»dy = U® +t2U,®)
0
which proves that the integral on the left converges for all #>0. Let B stand
for the value of the left side when ¢ = ¢,. For y>1t, we can apply (3.7) to
conclude

(3.20) U@ +t*PU,(H) <B + pK~ ' U, (1 jtyp‘l (t/y)idy <

0

<B+ T KU,
P —4q
Divide this inequality by U (¢) and let t— 0. If U (f)—c0 we get the asser-
tion (3.8). If U (¢) remains bounded there is nothing to be proved because

(3.7) implies that ¢? U, (f) increases at least as fastas /7”9, and hence r = o
whenever U is bounded.

Note. Our result lack the perfect symmetry of the original Karamata
relations. Starting from (2.2) we get (3.3)-(3.4). However, when we apply
the converse with these given values we get (2.2) in the weaker form with y
replaced by a constant y' >y. Examples given in [2] show that, in an obvious
sense, this result is the best possible.
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4. OTHER CONDITIONS

By theorem 1 both U and U, vary dominatedly whenever »>0 and 7 < co.
The next theorem gives even simpler criteria for dominated variation that
remain applicable in the limiting situations r = 0 and 7 = oo.

THEOREM 3. If there exists a number E>1 such that

(4.1) fim inf 240 o 1
U (1)

then U, varies dominatedly. Similarly the relation

4.2 lim inf —”
(4.2) U

implies the dominated variation of U.

Proor. Clearly

t? U, (1) - t?[U (1) — U (18] S e U(té) — U®

uiw = U (1) U (1)

(4.3)

When the right side is bounded away from O this implies >0, and so U,
varies dominatedly by theorem 1.

We can go a step further. If, besides (4.1), it is known that U varies
dominatedly with exponent y<p, then ¢ 7 U (¢)/U, (¢) is bounded away
from 0, and hence the second inequality in (4.3) implies that

U, () —U,(t) > 0

(4.4) lim inf
U, ()
This is equivalent to (4.2).
Similarly
U,(t) — U,(t U@é — U(t
(4.5) y B = Upte) (&) ® _

U, () U, (tf)

_ ¢ U@ -U
Ry(t&) U@E

The second fraction on the right does not exceed 1, and so (4.2) ensures
that Ry (¢£) remains bounded, and hence that U is of dominated variation.
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Again, if it is known that R is bounded away from O then (4.5) shows that
(4.2) implies (4.1).
We have thus proved the

COROLLARY. If U is of dominated variation with exponent y<p then
(4.1) implies (4.2). Similarly, if U, is of dominated variation with exponent
—qg where q<p, then (4.2) entails (4.1). (In each case both functions are
of dominated variation.)

5. RATIO LIMIT THEOREMS

Let U and ¥V be non-decreasing unbounded functions, and suppose that
L 1s slowly varying (= regularly varying with exponent 0).

DerINITION.  We shall say that U and V are L-equivalent and write

(5.1) Ve UL

if the ratio UL|V tends to 1 at all points of continuity.
More precisely, it is required that for each ¢>0 and fixed A>1

(5.2) (1—e) L) U (/) < V(£ < (1+¢) L) U (tA)

for all ¢ sufficiently large.

THEOREM 4. Let U be of dominated variation. In order that there exist
a slowly varying function L such that (5.1) holds it is necessary and sufficient
that

(5.3) Ry(t) — R, (1) - 0 boundedly.
Needless to say, Ry and #, are defined by analogy with Ry in (1.5)
and #Z, in (3.2).

PrROOF. (a) Necessity. Assume (5.1) and suppose that U satisfies the
basic inequality (2.2). Obviously the slow variation of L implies that for ¢
sufficiently large and all x> 1

(5.4)

for any pair of constants C’'> C and y’ >y. Thus ¥ is of dominated variation,
and since p>7y the function ¥, exists.
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Let ¢,— oo in such a way that the measures associated with U (¢,")/U (t,)
tend (in finite intervals) to a limit measure m. The relation (5.1) implies
obviously that the measures associated with ¥ (¢,)/V (z,) tend to the same
limit m. Thus when ¢ runs through {z,} we have for fixed x>1

U,() — U,(tx) x _, U(dy) ~

s 17 v T

(5.5)

and the same relation holds with U replaced by V. But (5.4) implies that
this passage to the limit is uniform as x—o0; it remains valid also for
x=o00 with the right side being finite. We have thus shown that Ry (¢,)—
— R, (¢,)—0. But the ¢, may be picked as elements of an arbitrarily prescribed
sequence, and so the limit relation in (5.3) holds pointwise for an arbitrary
approach t—oo. Now we know that the dominated variation of U and V
implies the boundedness of both R, and R, and the condition (5.3) holds
true.

(b) Sufficiency. The variation of U being dominated, R, remains
bounded and so (5.3) implies the boundedness of R, and hence the domin-
ated variation of V. The calculation of part (ii) in section 3 show that

sPTL U (s) B sTPTIV(s) p 1 ~ 1 ]
Iy (s) Iy(s) t[l + Ry(s) 1+R,(s)|

(5.6)

The expression within brackets is in absolute value bounded by | Ry (s)—
Ry, (5)|, and therefore tends to 0 boundedly. Integrating between ¢ and x> ¢
we conclude therefore that

Fo®)  Fyx)
R I

(5.7)

In other words, the ratio ¢ /¢, varies slowly, and therefore we can put
(5.8) Fy(@®) = L@ Sy ()

where L varies slowly.
We now recall the inequality (3.14) which implies that to each A>1

there exists an #<1 such that
(5.9) Fu(At) <n Iy ()

for all ¢ sufficiently large. From (5.8) we conclude therefore that
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e
(5-10) i D= oD L0

L) Sy () = LD S (1) _
IO I — L) Fo ()

But the fraction on the left lies between

V(i) and V(t)
U (t) L(1) U (At) L(?)

and so (5.1) is true.

6. APPLICATION TO TAUBERIAN THEOREMS

If the measure U varies regularly at infinity, then its Laplace transform w
varies regularly at the origin. More precisely, Karamata’s now classical
Tauberian theorem states that for any « >0 and slowly varying function L
the two relations

(6.1)  U(x) ~x* L(x) w(l) ~ [@+1) ALY

imply each other; here x— oo but 1—0. [The sign ~ indicates that the ratio
of the two sides tends to 1.] For an example of a probabilistic application
suppose that

(6.2) U(x) = | y?F(dy)

is the truncated p™ moment of a probability distribution F on the positive
half axis. For simplicity let p stand for a positive integer. Then U, (x) =
— 1—F(x) and @ = (—1)?¢? where ¢ is the Laplace-Stieltjes trans-
form of F. If @ varies regularly in accordance with (6.1) then Karamata’s
relation (1.8) implies that

(6.3a) 1 — F(x) ~

x*"P L(x) when o <p

(6.3b) 1 — F(x) = o(x*L(x)) when o =p.

(Note that necessarily 0<Ca<(p because the measure F is finite.) In other
words, the behavior at the origin of the derivatives of the Laplace transform
determines the behavior of the tail 1—F (x), and vice versa.
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From the continuity theorem for Laplace transforms one concludes
without difficulties that dominated variation of U at co is equivalent to domin-
ated variation of @ at 0. Even in the case of mere dominated variation the
behavior of w = (—1)?¢?) therefore permits inferences concerning the
behavior of the tail 1 — F, but naturally the conclusions will lack the pleasing
precision of (6.3). It is therefore remarkable that precise asymptotic equiv-
alence relations can be obtained when comparing two probability distribu-
tions F and G with Laplace transforms ¢ and y.

A typical Tauberian ratio limit theorem would state that the two relations

(6.4) Y P (A) ~ PP () L(%) A—=0
and
(6.5) 1 - G(x) ~[1 —F(x)] L(x) X > o

lmply each other. This is not true in full generality; indeed, (6.3b) points
to exceptional situations even when the transforms in (6.4) vary regularly.
However, our results yield a variety of fairly general sufficient conditions
for the validity of the conclusion. Suppose, for example, that for some
constants 4 and a<p

(6.6) (—1)?dP () < A1*

for A sufficiently small. It is easily seen in this case that U varies dominatedly
with exponent o« and (6.4) is equivalent to

(6.7) Ve UL

in the sense of (5.1). (Here V stands for the truncated moment function
of G defined as in (6.2).) Theorem 4 then asserts that (5.3) holds, and this
implies

(6.8) V,+< U,L

whenever U is bounded away from 0. Now (6.5) differs from (6.8) only
notationally, and we know that the condition (4.1) guarantees that Ry is
bounded away from 0 and that U, = 1—F varies dominatedly. Again, (4.1)
holds if, and only if, each limit of a convergent sequence of measures
U (t, dx)/U (t,) attributes a positive measure to (0, co). This requirement is
satisfied if, and only if,

(p)
(6.9) Jim inf & (£%0)

&0 d)(p) (8)
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for some A,>1. Accordingly, if the conditions (6.6) and (6.9) hold then
(6.4) implies (6.6.) as well as the dominated variation of 1—F and 1—G.

Our results permit various paraphrases of the sufficient conditions, and
also of the ratio limit theorem itself. That (6.6) by itself is not sufficient is
shown by (6.3b); without (6.9) certain subsequences may exhibit the pattern
of slow variation, and the conclusion (6.5) must be replaced by a weaker
conclusion of the form (6.30).

7. ON THE TAILS OF INFINITELY DIVISIBLE DISTRIBUTIONS

To illustrate the usefulness of the notion of dominated variation in
probabilistic contexts we prove the following

PROPOSITION. Let H stand for an infinitely divisible probability distribu-
tion with Lévy measure M {dx}. If M varies dominatedly at + oo then

(7.1) 1 —H(X) ~ M{(x, )}, X - +

in the sense that the ratio of the two sides tends to unity at all points of

continuity. (A very special case involving regular variation is mentioned
in [1], p. 540.)

Proor. We shall show that the general proposition follows easily from
the special case where M is supported by the positive half axis and has a
finite mass p. In this case

(7.2) M{(x, )} = u[1—F(x)] x >0

where F'is a probability distribution on (0, x), and H reduces to the compound
Poisson distribution given by
\ A -
(7.3) H(x)ze“Z-—'F" (x) x>0.
n=o 1!

We proceed to prove the assertion (7.1) for distributions of this form
assuming that 1—F varies dominatedly. Note that F™ is the distribution
of the sum S, = X{+...4+ X, of n mutually independent random variables

with the common distribution F. Since these variables are positive, the

event {S,>x} occurs whenever at least one among the n variables exceeds x,
and so

(7.4) L= F"(x)=n[1-Fx)] - @ [1—F(x)]?




— 120 —

by an easily verified inequality named after Bonferoni. Substituting into
(7.3) it follows that

(7.5) Il —H(x)>u[l-F(x)] - %u"‘[l—F(x)]z =
= M{(x, 0)}[1+0o(1)], X = 00 .

To obtain an appraisal in the opposite direction choose 0<e< 7 and

note that the event {S,>x} cannot occur unless either at least one among

the variables X, ..., X, exceeds (1 —¢) x, or at least two among them exceed
ex/n. Thus

(7.6) 1 —F"(x)<n[1-F(1-¢x)] + <z> [1—F(ex/n)]* .

To apply the argument used in (7.5) we would have to know that the ratio
of the two brackets on the right tends to 0 as x— co. Because of the assumed
dominated variation of 1—F this is true for every fixed »n, but to make
the ratio <6 we must have ex/n sufficiently large, that is, n<Cax, where a
is an appropriate constant. On the other hand, if » is the smallest integer
exceeding ax and if ax>2u we have trivially

(7.7) vy 2 <o <ﬁ> <2 (fi>
neyp 1! r ax

and the right side tends to zero faster than any power of x~!. In view of
the dominated variation of 1—F this implies that the quantity (7.7) is
o (1—F (x)), and this together with (7.6) shows as in (7.5) that

(7.8) 1 — H(x) < pu[1-=Fx)](1+o(1)).

This proves the assertion for distributions of the form (7.3).

For the general case we represent the Lévy measure M as a sum of
three measures supported by the intervals (1, ), [—1, 1), and (— o0, 1],
respectively. This puts H in the form of a triple convolution, and so we may
conceive of H as of the distribution of a sum X+ Y-+ Z-const. of three
infinitely divisible mutually independent random variables such that X >0,
Z <0, and Y has a Lévy measure supported by [—1, 1]. It follows that Y
has moments of all orders, and hence for arbitrary ¢>0 and =

(7.9) P{|Y] >ex} =o0(x") X — 00 .
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Because of the assumed dominated variation M {(x, co)} decreases more
slowly than a certain power x %, and hence the quantity (7.9)is o (M {(ax,0)}
for any fixed a>0. Since Z<0 and X has a distribution of the form (7.3)
we conclude that

(7.10) P{X+Y+Z>x}<P{X>(1—-¢gx} +P{Y>ex} ~
~ M{((1-¢&x, 0)}.

On the other hand,

(7.11)  P{X+Y+Z>x}>P{X>U+ex} P{Y+Z>—ex},

and the last factor tends to 1 as x—o0. The probabilities on the left are
therefore ~ M {(x, )}, as asserted.
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