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AN APPLICATION OF STOCHASTIC PROCESS SEPARABILITY

J. L. Doos

To the memory of J. Karamata

Let R be a set and let & be a g-algebra of subsets of R; that is, let (R, %)
be a measurable space. (If R is a topological space we always choose %
as the o-algebra generated by the open sets.) Let (2, %) be a second
measurable space and let P be a measure defined on % with P {Q} = [,
Let 7 be an interval on the real line and for each point ¢ in T let x (¢) be a
measurable function from (Q, &) into (R, %4). In probability terminol-
ogy x(t) is a random variable and the family {x (t),teT } of random
variables is a stochastic process with state space R. If x (¢, w) is the value
of x (¢) at the point w of Q, the function x (., @) from 7T into R is a sample
function of the stochastic process.

Now suppose that R is a topological space and that one wishes to
discuss such concepts as continuity of sample functions, concepts which
involve values of sample functions on uncountable subsets of 7. Such
discussions lead to nonmeasurable sets of Q, that is sets not in &, unless
further restrictions are imposed. If R is a compact metric space the usual
way out of the difficulty is to suppose that the process is separable, that is
to suppose that there is a countable dense subset 7, of 7, a “ separability
set 7 with the property that for almost every w the graph of the sample
function x (., w) is in the closure of the graph of the restriction of the sample
function to T, (see [I], or, in a more sophisticated version [III]. It is proved
in the study of separable stochastic processes that if {x (t),teT } 1S a
stochastic process defined on (Q, &, P) with a compact metric state space
there is a separable stochastic process {xo (1), t €T}, defined on (Q, 7, P),
satisfying

P{x(t) =x,()} =1

for all # in 7. Thus the distributions of countable sets of the random
variables are not affected by the shift from x (¢) to x, (£). Many conditions
on sample functions of a separable process involving uncountable subsets
of T, such as sample function continvity at a point or on an interval, can
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be defined in terms of sample function values on the countable separability
set, and in this way it is shown that the conditions determine subsets
of Q in &, so that the corresponding probabilities are defined.

The purpose of this paper is to point out that the shift from a process
to a separable version of the process is more than just a trick to make
certain conditions lead to measurable sets. It is also a tool to be used
in compactification problems. The following problem is common. One
1S given a stochastic process {x (t),teT } with measurable state space
(Ry, %,), where R, is either not provided with a topology or at least is not
provided with a compact metric topology, and one wishes to immerse R,
in a compact metric space and them replace the process by a separable
version of the process. (This is the context in which separability was
first introduced: R, was the set (— o0, c0) in the usual topology.) Suppose
that R can be mapped in a one to one way on to a Borel subset of a compact
metric space R (and that the map is continuous if R, is topological). Then
we identify R, with its image and the given stochastic process can be
considered as a stochastic process with state space R. If the given process
is now replaced by a separable version the change will yield a process whose
individual random variables will each have its values almost certainly in R,
but the price of separability is that in general the sample functions of the
separable process have values in R— R, as well as R,. In applications R,
is given and R is chosen by some compactification procedure. The character
of the sample functions of the final separable process depend radically on
the choice of R. When R, = (— o0, c0) one has in the past usually
chosen R as the one point compactification of the line, or as the extended
real line [— o0, o0]. The following procedure provides a compactification
(in the context of Markov processes) which is adapted to the character of
the given stochastic process. This compactification is designed to yield
separable processes with sample functions having nice continuity properties.

Ler (R,y, #,) be a measurable space, and let p be a Markov process
transition function on (R, %,). Thatisif r>0and if & isin Ry, p (¢, &,)
is a probability measure of sets in %, such that p (¢, ., 4) is #,-measurable
if A is in %, and that the Chapman-Kolmogorov equation

(1) p(s+t, & A) =[p(t,n, Ap(s, & dn)

is satisfied for strictly positive s and z. Suppose now that & --» f(£) maps R,
in a one to one way onto a Borel subset of a compact metric space R,
and that if 4 is a Borel subset of R, f "' (4) € #,. Then R, can be iden-
tified with its image in R and a Markov process with state space R, and the
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given transition function can be looked on as having state space R. Such
a process has a separable version with state space R and the same probability
distributions of countable sets of the random variables. The separable
process is therefore Markovian, and has the original transition function
in a slightly loose sense. If R, is a topological space f is supposed con-
tinuous If this procedure is to be useful in investigating the fine structure
of the separable process it must be possible to extend the transition func-
tion from R, to R, or at least to a Borel subset of R carrying the process
(after it has been made separable).

One simple way of carrying out this compactification procedure is the
following. If ¢ is bounded, positive, and B, measurable and if « is strictly
positive define r (o, &, ¢) by

(2) ron &) = [ e dt | p(t, & dn) ¢ (n)o

If now {x (1), t>0} is a Markov process with state space R, and the given
transition function, the process

©) {7 r (o, x (1), ), 1> 0}

is a (not necessarily separable) supermartingale. Suppose that it is possible
to choose a sequence {gb,,, nél} such that (for convenience) 0=¢, =1 and
that the set of functions {r (o, ., ¢,), n==1, a rational >0} separates R,.
Let {u, n=1} be this set of functions in some order. The map

Eer () = (1 (8),uz (&),...)

maps R, in a one to one way into the countable dimensional interval
[0, 11X [0, I]X... in which we adopt one of the standard compact metric
topologies, say that in which the distance between {a,} and {b,} is

1 lby,—a,| 27"

Let R be either this interval or, to avoid superfluous points, let R be the
closure of the image of R, in this interval. From now on we identify R,
with this image. The function u, has a continuous extension to R, and
the sequence of these extensions separates R. It is easily seen that r («, ., ¢,)
has a continuous extension to R even if « (>0) is not rational. Now
suppose that the given x () process is replaced by a separable version
relative to R. We use the same notation {x (1), t>0} for the separable
version as for the original one. For each «>0 and 5 the process (3) is
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now a separable supermartingale because r (o, ., ¢,) is continuous on R.
Almost no sample function of a separable supermartingale has an oscilla-
tory discontinuity, and it follows readily that almost no sample function
of the x (¢) process has an oscillatory discontinuity. Thus the immersion
of R, in R has led to a process with desirable sample function continuity
properties, even though the original state space may not be topological.
If the original state space R, is topological, ¢, should be chosen to make
each function r (o, ., ¢,) continuous on R, in its given topology. '

The procedure just described has been carried through in detail in one
case. Let R, be a countable set, whose elements are identified with the
strictly positive integers, and let %, be the class of all subsets of R,. The
transition function is then determined by the point to point transition
probability p (¢, i,j). We are thus dealing with a continuous parameter
Markov chain and the hypotheses on p become

(4) p(taiaj)éoa ij(ta la]) = 19
p(s+t,i,k)=2;p(s,i,)) p(t, ], k)

to which we add the standard minimal continuity assumption

(5) llmtﬂop(ta la.]) = 1

The simplest topologization assigns to R, the discrete topology and com-
pactifies R, by introducing a point at infinity. This topologization is not
adapted to the process however, except in special cases. The procedure
outlined above is usable, with ¢, defined as 1 at » and O otherwise. The
compact metric space R is then a compactification of the set of strictly
positive integers, and, depending on the given transition probabilities, a
sequence of integers may converge to an integer. A separable version of
the original Markov chain can be obtained in this way whose sample func-
tions are almost all right continuous with left limits; the process has the
strong Markov property and is quasi left continuous [2]. The sample
functions and their left limits are supported by a Gj; subset S of R to
which tne transition function is extended in such a way that the function
(1, &) -»p (¢, &, A) is continuous for >0, ¢ in S. Note however that
it is still true that x (z) is almost surely integer valued for each strictly
positive specified value of t. Thatis, X; p (¢, £,j) = 1 for 1>0 and £in S,
where j runs through the strictly positive integers. On the other hand the
distribution p (¢, &, .) has a limit for # — 0 and the limit distribution i1s
supported by S but not necessarily by the set of integers.
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Finally we remark that the compactification procedure for Markov
processes suggested in this paper is not the only way that has been proposed.
The other methods, of which [4] is the most recent example, use semigroup
theory to extend the given transition probability function from the given
state space to a larger compact metric state space in which the process
is then defined using the extended transition probability function. The
method suggested in this paper, which is applicable to a more general
situation, proceeds on the contrary from a process to a separable process
in the larger space and the extended transition probabilities for the larger
space are defined by the separable process.
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