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a étant une fonction de sé2 et F une fonction de X2, on désignera par

alF la fonction Gde X2 définie par

G(x,y) Y, a(m(— ,-)•
m^x \m n)
n^y

a étant fixée, l'application F-*a±F est une application linéaire de X2

dans X2.
De plus, on vérifie immédiatement les propriétés suivantes:

a) Quelle que soit Fe X2, e2FF F;

b) Quels que soient Fe X2, a e sé2 et X e C,

(Xa)lF X {aFF) ;

c) Quelles que soient Fe X2, a et b e sé2,

al(b±F) (a* b)lF.

6. Fonctions génératrices

6.1. A la fonction / de sé2 nous associons la série double

f(m,n)
m,n^1

msns' '

où s et s' sont deux variables complexes.
S'il existe des valeurs de s et s' pour lesquelles cette série est convergente,

la fonction qu'elle représente est dite « fonction génératrice » de /.
Si les séries associées aux fonctions/et g de sé2 sont absolument convergentes

pour 0ts g et 0ts' <?', il en est de même de la série associée à

/* g et sa somme est le produit des sommes des deux premières.
Pour le voir, il suffit de considérer la série quadruple

£ /(m1,Ki)g(m2,u2)
1 TYl2 ^1^2

qui est absolument convergente pour 0ts — a et 01s' — <jr, et de grouper
ensemble les termes pour lesquels les produits m1 m2 et les produits zq n2
ont les mêmes valeurs.

Ainsi, comme dans le cas d'une variable, la convolution correspond à

la multiplication des fonctions génératrices.
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6.2. / étant une fonction de 9JÏ2, et g et g' étant deux nombres réels,
si Ton a

I \f(pj,pk)
PJ\k P

j,k^O
j-k> 0

j<7 + k0' < + CO

la série

I f(m,n)

est absolument convergente pour 2%s > g et > cr' et sa somme est égale
à la valeur du produit infini absolument convergent

n i f(pj,pkp

_y,^0 Pj s + k s'

Pour établir ce résultat, il suffit de prouver que, si g e 9J12 et si l'on a

X I 9 (pJ,Pk)I< + co
p.j.k

j,k—0
j — k>Q

la série £ g (m, 77) est absolument convergente et sa somme est égale à la
1

valeur du produit infini absolument convergent

(15) n [ X 9/)]
p j k=Q

Le résultat voulu s'en déduira en prenant g (m, n)

Soit pu p2, pn la suite des nombres premiers rangés par ordre
croissant.

Le produit infini (15) s'écrit

n X 9(pÎPr)
_j\k=0

Il est absolument convergent car, pour chaque r,

I X 9(pJr.PÏ) ~1 f I X 0 J>î() I < X ll?0V.Pr)l,
j.k—0 j-k=zO j-k—O

j— k > 0 7 -f 7c > 0

de sorte que
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Z I Z g(pl,fi) - II < + 00

r1 j,k=:0

On voit en même temps que le produit infini

+ 00

n
r 1

Z I 9 (PÎ' I

est convergent. Soit P sa valeur.

Soient maintenant gr et hr les fonctions de 9K2 déterminées par

9r(PJ,Pk)

et

K(pJ,pk)

9 (P1,Pk)si

0 si p > pr,

9 (p]> P si

0 si p7^
(/ et k > 0, / + k > 0).

Il résulte de la formule (13) que, pour chaque couple [m, n], gr (m, n)
tend vers g (m, /?) quand r tend vers + co.

De plus, on voit que, pour chaque r > 1,

G r + 1 Gr * ^r+1 löh+ll löhl * l^r+ll ï

et on en déduit, par récurrence sur r, que, pour chaque r > 1, la série

gr (m, ri) est absolument convergente et on a
m,n^ 1

(16)

et

(17)

Z lö'r ('«.") I n
q—1

Z gr(m,n)
<7 1

Z I 9(.ILj,k^0

Z 9(pjq,pl)
Lj k^O

Il résulte de (16) que, quel que soit x > 1, on a pour tout r > 1

Z \gr(m,n<P.
En faisant tendre r vers +oo, on obtient à la limite

Z I 9 (m,| < P
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et il en résulte que la série £ |g (m, n)\ est convergente.
m*n— 1

_
Maintenant, d'après la formule (13), pour chaque couple [m,n], on a

| gr (m, ri) | < | g (m, ri) | quel que soit r>l.
Alors (17) donne, par passage à la limite pour r tendant vers + oo,

+ 00 |-
Y g(m,n)f] £ d(PJq,Pq)

m,n^l q= 1 Lj,fc~0

Reçu le 27 avril 1968)
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