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a étant une fonction de &7, et F une fonction de X,, on désignera par
alF la fonction G de X, définie par

m=x m n
n=y

G(x,y) = Y a(m,n)F(f,X>.

a étant fixée, Papplication F—a L F est une application linéaire de X,
dans X,.
De plus, on vérifie immédiatement les propriétés suivantes:

a) Quelle que soit Fe X,, e, LF = F;
b) Quels que soient Fe X,, ae o, et LeC,
(@) LF = A (aLF);
¢) Quelles que soient Fe X,, a et be ,,
al (bLF) : (a, b)LF.

6. FONCTIONS GENERATRICES

6.1. A la fonction f de ./, nous associons la série double

y f(m,n),

s .8
m,n==>1 m-n

ou s et s’ sont deux variables complexes.

S’il existe des valeurs de s et s” pour lesquelles cette série est convergente,
la fonction qu’elle représente est dite « fonction génératrice » de f.

Si les séries associées aux fonctions fet g de &7, sont absolument conver-
gentes pour #s = o et As’ = o', il en est de méme de la série associée a
f« g et sa somme est le produit des sommes des deux premiéres.

Pour le voir, il suffit de considérer la série quadruple

Z f(my,ny) g (my,ny)

S s _ .8 _. s
mi,me,ny,ne=>1 mymyn;n,

b]

qui est absolument convergente pour #s = ¢ et #s’ = ¢’, et de grouper
ensemble les termes pour lesquels les produits m, m, et les produits n, 1,
ont les mémes valeurs.

Ainsi, comme dans le cas d’une variable, la convolution correspond &
la multiplication des fonctions génératrices.
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6.2. f étant une fonction de IN,, et ¢ et ¢’ étant deux nombres réels,
silon a

j k
lf(p,p)|<+

)3

jc+kec’ ?
Pk pJG i
k=0
j—k>0
la série
3 f(m,n)
mo1 m'n®’

est absolument convergente pour Zs > ¢ et Zs' > ¢’ et sa somme est égale
a la valeur du produit infini absolument convergent

n| s 222

Jjs+ks’
p Ljk=0 D

Pour établir ce résultat, il suffit de prouver que, si ge Wi, et si I'on a

Y lg(pl,pH] < + o,
p.Jk
j k=0
j—k>0

lasérie > g(m,n)estabsolument convergente et sa somme est égale a la

man=1

valeur du produit infini absolument convergent

(15) [T0 > a(p. 9]

7 . ) 14 s f(m, n)
Le résultat vouluv s’en déduira en prenantg (m,n) ="——— .
m® n

Soit py, Pas s Dby ... la suite des nombres premiers rangés par ordre
croissant.
Le produit infini (15) s’écrit

ﬁ [ > g(pi,pf):I-

r=1 | j,k=0

I1 est absolument convergent car, pour chaque 7,

S gplph) =1l =1 Y gplphl< Y lal.p)l,
j e — i k==0 i, k=0
HE=D J']—k>0 jj+k>0

de sorte que
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+ 0

S Y glph)—-11<+o.

r=1 jk>0
On voit en méme temps que le produit infini
+ o0 )
i 5 sati]
r=1 L j k=0

est convergent. Soit P sa valeur.
Soient maintenant g, et A, les fonctions de 9, déterminées par
g (0. ) = g(@,p) st p<p.,
T 0 si p>p,,
et

: g, p") si p=p.,
h,(p', ) = {0 .
sl p #p,.
(jet k >0,j+ k> 0).
Il résulte de la formule (13) que, pour chaque couple [m, n}, g, (m, n)
tend vers g (m, n) quand r tend vers + oo.

De plus, on voit que, pour chaque r > 1,

Gre1 = Grs oyt et 19r+1] = 19, « [hes1],

et on en déduit, par récurrence sur r, que, pour chaque r > 1, la série
> g (m, n) est absolument convergente et on a

(16) Sl (mm| = n[ S 19 (b q
m,n=x1 g=1 Lj k>0

et

(17) Y, g.(m,n) = H[ > g(pé,p’q‘)]
m,n==1 g=1 Ljk=0

Il résulte de (16) que, quel que soit x > 1, on a pour tout r > 1

> lg.(mn)| <P.

mn=x

En faisant tendre r vers - oo, on obtient a4 la limite

2 lg(m,m| <P

mn=x
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et il en résulte que la série ) |g(m, n)| est convergente.
myn>1
Maintenant, d’aprés la formule (13), pour chaque couple [m, n],’ion a
!g,(m, n)| <|g(m,n)| quel quesoit r>1.
Alors (17) donne, par passage a la limite pour r tendant vers -+ co,
+ o0 )
2 g(m,n) =[] [ 2 g(pé,p’;)].
m,n=1 g=1 L jk=0

( Recu le 27 avril 1968)

H. Delange
Faculté des Sciences de I’Université de Paris a Orsay
91 - Orsay
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