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D’autre part, si on a (9), on a nécessairement
h=E(f) car E(h) =
et E(f) =E@+E(M) = e E(W) = E(h).
On voit de suite que E~ ! (e,) est I'ensemble des g € G, telles que

g1,1) =1,
g(m,1) =0 pourm>1
et g(l,n) =0 pourn>1.

|

On a ainsi le résultat suivant:
A toute fonction f de G, correspond une fonction g unique satisfaisant a

g, ) =1
g(m,1) =0 pour m>1 et g(1,n) =0 pourn>1,

et telle que 'on ait pour m et n>1

n
1,d2 1,'—“‘ .
7, 1>d§ng( )f( )f< d2>

dafn

(10) f(m,n) =

On peut supprimer dans cet énoncé la condition g (1, 1) = 1, car elle
est une conséquence de (10) pour m = n = 1. On peut aussi supprimer

dans (10) le facteur en multipliant la fonction g par ce facteur. On

2 b

obtient ainsi I’énoncé suivant:
A toute fonction f de G, correspond une fonction g unique satisfaisant a

(11) g(m,1) =0pourm>1 et g(l,n) = 0pourn>1l

et telle que 'on ait pour m et n>1

(12) f(m,n) = ) g(dladz)f< )f(l ; -5—)
di/m 1 2
do/n

4. FONCTIONS MULTIPLICATIVES ET FONCTIONS ADDITIVES

La fonction f de 7, sera dite multiplicative si ’on a

fa, 1 =




et f(m' m’',nn'y=fm,n)fm',n") lorsque (m'n', m" n'’) =121.
Elle sera dite additive si 'on a
S m’,n'n’")y = fm',n) + f(m"’,n") lorsque (m' n',m" n'’) =1
(ce qui entraine f(1,1) = 0, comme on le voit en prenant m' = m'’ =
=n =n"=1).

Le plus grand commun diviseur et le plus petit commun multiple de m
et n sont des fonctions multiplicatives de m et n. Il en est de méme de la
fonction égale & 1 quand (m, n) = 1 et a zéro quand (m, n)> 1.

Le nombre des diviseurs premiers communs a m et n, la somme de ces
diviseurs, sont des fonctions additives de m et n.

On voit immédiatement qu’une fonction multiplicative, ou additive, est
complétement déterminée quand on connait ses valeurs pour tous les
couples [p’, p*], ol p est un nombre premier et j et k sont des entiers >0
tels que j+kA>0.

Plus précisément, soit p, la fonction de <7, définie par

o () ={1r si. pkn,
pP

si p'fn e ptlin,r>0.

Si f est multiplicative, on a

(13) f(m,n) =[] flp,(m),p,m)].

plmn
Si f est additive, on a

f(ma n) = Z f[pp(’n)app(n)] .

p/mn

Dans les deux cas, les valeurs de f(p’, p*) peuvent étre choisies arbi-
trairement pour tous les nombres premiers p et tous les couples [, k] d’en-
tiers >0 tels que j+k>0.

4.1. Nous désignerons par Wi, ’ensemble des fonctions de 7,
qui sont multiplicatives, I, désignant ’ensemble des fonctions multipli-
catives d’un entier >0.

Il est évident que I, = G,. En fait, I, est un sous-groupe de G,, comme
I, est un sous-groupe de G;.

Tout d’abord, on voit immédiatement que, si f et ge M,, f.g e M,.

En effet, si (m'n’,m"n’)=1, on a (m',m")=@m,n")=1 et on
obtient tous les diviseurs de m’ m’’, chacun une fois, en formant tous les

1) La condition f (1, 1) = 1 est conséquence de la deuxiéme condition si ’on suppose que f n’est pas
jdentiquement nulle. Nous I'introduisons pour écarter la fonction identiquement nulle.
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produits d'; d”’; oud’;/m’ etd”,/m", et tous les diviseurs de n' n'’, chacun une
: . ’ ” ‘ ’ ” 17
fois, en formant tous les produits d, d,, ou d,/n’ et d,/n".
On a d’ailleurs

d, d’ d”d” m' n' m'n" _
(12:12)'— d1d2 dld;—‘

. o e . . ot o o
On voit ainsi que, si# = f, g, avec fet ge My, etsi (m' n',m" n"’') =1,
on a

h ) Z f(d’d” d, d”) (ml m/l nl nll)
m/ n/’ m// n// — , g i — y
( punr?] 0 G DI\ G
d’oln’, d"gln’’
Z f(d d ) <mr />f(d d ) <mll n//>
= 5 g s g g
d'yIm’,d"y[m”’ . d1 dz b d1 dz
d'gln’, d"sn”
[ ’ nr 1 m// nr/ ]
=y f(dl,dz)g( ~—,>'H{ Y f(dl,d;z)g(d —>'
{d’1/m’ d1 dz J|d”1/m 1 2 i
ld'2/n/ l d"g/n J

= h(m',n"Yh(m",n").

Pour montrer que, si feM,, f~* € IM,, on peut procéder de la fagon
suivante.

On montre que, pour chaque nombre premier p, on peut déterminer les
nombres a,(j, k), ou j et k sont des entiers >0 et j+k>0, de fagon que
I’on ait pour j et k>0 et j+k>0

(14) f@e.MH+ Y f@ 7, (LK) =
o
j tk'>0

Pour cela, on fait un raisonnement semblable a celui par lequel on a
montré au § 2.1 que, si fe o/, et f(1,1) # 0, f est inversible.
Ceci dit, on peut déterminer une fonction g de I, par

g, p") =a,(,k) pour j=>0,k>0,j+k>0.
On sait que f', g € M,. Mais (14) montre que, si h = f, g, on a
h(p',p*) =0 pour j>0,k>0,j+k>0,

et, d’apres (13) appliquée a A, ceci entraine i = e,.
Donc g =f"*.
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4.1.1. Il est clair que M, @M, =G, ®G, et il résulte de (7) et (8) que
M, @Iy est un sous-groupe de G;®G,, donc de G,.

On voit immédiatement que I, @I, =IM,. Par suite N, @M, est un
sous-groupe de IN,.

E étant ’endomorphisme de G, considéré au§ 3, soit i, = W,NE "1 (e,).

I, est un sous-groupe de G,, comme intersection de deux sous-groupes,
donc est un sous-groupe de M,.

i, est produit direct de N, et I, @IN,.

En effet, on a vu au § 3 que G, est produit direct de £ (e,) et G,®G,
et que, dans I’expression d’une fonction f de G, sous la forme

f=g4h, o0 geE'(e,) e heG®G,,

onah=E(f)etg=f,h*

Mais on voit immédiatement que, si feIM,, E(f)e M, ®W,. Donc,
si feIM,, he M @M, et par suite heIN,, ge W, et finalement g e N,.
De plus, 'expression de f sous la forme

f=g84h, o geMN, et heIQM,,

est unique parce que N,=E~! (e,) et M, @M, =G, ®G,.
On voit de suite que I, est ’ensemble des fonctions g de M, qui satis-
font a
g(p’,p") = 0 quand j ou k = 0 mais j+k>0,

ou, ce qui revient au méme, a

g(m,n)=0 quand {p|p/m} # {p|pn} .

5. FONCTIONS DE &/, COMME OPERATEURS

Il est classique d’utiliser les fonctions de &/, comme opérateurs dans
I’espace vectoriel des fonctions complexes définies sur I'intervalle [1, 4 oo],
espace vectoriel que nous désignerons par Xj:

a étant une fonction de /; et F une fonction de X;, on désigne par
al F, par exemple, la fonction G de X; définie par

Gx) =Y a(n)FG>.

n=x

On peut de méme utiliser les fonctions de 7, comme opérateurs dans
I’espace vectoriel X, des fonctions complexes de deux variables réelles >1.



	4. Fonctions multiplicatives et fonctions additives

