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D'autre part, si on a (9), on a nécessairement

h E(f)carE (h) h

et E(f) =E(g)*E(h) =e2*E(h) EQi).

On voit de -suite que E_1 (e2) est l'ensemble des g e G2 telles que

S (M) 1,
g (m, 1) 0 pour m > 1

et =0 pour«>l."
On a ainsi le résultat suivant:
A toute fonction/ de G2 correspond une fonction g unique satisfaisant à

*(U)=1'
g (m, 1) 0 pourm>l et g(l,n) 0 pour«>l,

et telle que l'on ait pour m et 1

do» /(-»,») -jh)l\• 1)/(1 • s) •

d2ln

On peut supprimer dans cet énoncé la condition g(l, 1) 1, car elle

est une conséquence de (10) pour m n 1. On peut aussi supprimer

dans (10) le facteur
^

en multipliant la fonction g par ce facteur. On

obtient ainsi l'énoncé suivant:
A toute fonction/ de G2 correspond une fonction g unique satisfaisant à

(11) g (m, 1) 0 pour m> 1 et g (1, ri) 0 pour n> 1

et telle que l'on ait pour m et 1

(12) £ g(d1,d21)^(1' J") '

d2/n

4. Fonctions multiplicatives et fonctions additives

La fonction / de sé2 sera dite multiplicative si l'on a

/(M) 1
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et / (m' m", ri n") f(m',ri)f(m",n") lorsque (m' ri, m' ri') 1 1).

Elle sera dite additive si l'on a

/(rri m", ri n") f(m, ri) + f(m", n") lorsque (m' ri, m" n") 1

(ce qui entraîne /(1, 1) 0, comme on le voit en prenant m' m"
ri n" 1).

Le plus grand commun diviseur et le plus petit commun multiple de m
et n sont des fonctions multiplicatives de m et n. Il en est de même de la
fonction égale à 1 quand {m, ri) 1 et à zéro quand (m,n)> 1.

Le nombre des diviseurs premiers communs à m et n, la somme de ces

diviseurs, sont des fonctions additives de m et n.
On voit immédiatement qu'une fonction multiplicative, ou additive, est

complètement déterminée quand on connaît ses valeurs pour tous les

couples [pj,pk], où p est un nombre premier et j et k sont des entiers >0
tels que j+k>0.

Plus précisément, soit pp la fonction de définie par

(n) { 1 Si V)(n '
/9p \ pr si pr/n et pr+1 n, r > 0

Si / est multiplicative, on a

(13) /(m, ri) — Y[f\_Pp(m),Pp{rij\.
p/mn

Si / est additive, on a

f(m,n) £/[pp(m),pp(n)]
p/mn

Dans les deux cas, les valeurs de f(pj,pk) peuvent être choisies
arbitrairement pour tous les nombres premiers p et tous les couples [j, k] d'entiers

>0 tels que j+k>0.
4.1. Nous désignerons par 9JÎ2 l'ensemble des fonctions de sé2

qui sont multiplicatives, $1/ désignant l'ensemble des fonctions multiplicatives

d'un entier >0.
Il est évident que En fait, 9Jt2 est un sous-groupe de G2, comme

90^! est un sous-groupe de Gv
Tout d'abord, on voit immédiatement que, si /et g e 9Jl2,f*g e 9Jl2.

En effet, si (m' ri, m" n") 1, on a (m', m") (ri, n") 1 et on
obtient tous les diviseurs de m' m", chacun une fois, en formant tous les

La condition /(l, 1) 1 est conséquence de la deuxième condition si l'on suppose que / n'est pas
identiquement nulle. Nous l'introduisons pour écarter la fonction identiquement nulle.
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produits d\d'\oùd\\m et d'^/m", et tous les diviseurs de n chacun une

fois, en formant tous les produits d2 d'2, où d2/n' et d2/n".

On a d'ailleurs

(d'ld'2'd'id^ ~ [T, d2'dld2)~L

On voit ainsi que, si h — f * g, avec feige 9Jt2, et si (m' ri, m" ri') 1,

on a

h(m'ri,m"ri') £ / {d1d1,d2d2) gLu J VWlUbW2W2Jid l 7 " ' 7' 7"
d't/m^d'^lm" \al a1 a2 ci2

d'z/n', d"«In"

^ .m n\ „ m" n

d'i/m', d" \jm"
d'iln', d"iln"

\ fm' n'W \ „ * /m" n"\]
E f(.d1,d2)gl-r,-r)\\ E / ' »!
Z j \au a2)y \ -jr > 1^ Z J Vul> u2jy \ -pr » -T77 /j.

d'u/m' \«1 «2/1 \«1 «2/|
J I d'W J

h (m', ri) h (m", n")

Pour montrer que, si /e9Jt2,/~* g3DÎ2> on Peut procéder de la façon
suivante.

On montre que, pour chaque nombre premier p, on peut déterminer les

nombres ap(j, k), où j et k sont des entiers >0 et j+k> 0, de façon que
l'on ait pour j et 0 et j+k>0

(14) f(pJ,pk)+E f(pJ-J\pk-k')ap

O^k'^k
j'+k'> 0

Pour cela, on fait un raisonnement semblable à celui par lequel on a
montré au § 2.1 que, si fe sé2 et / (1, 1) ^ 0, / est inversible.

Ceci dit, on peut déterminer une fonction g de 9Jt2 par

g (pj, pk)ap(j,k)pour j > 0, k > 0, j + k > 0.

On sait que /*ge9Jl2. Mais (14) montre que, si h f*g, on a

h CpJ, pk) 0 pour j > 0, k > 0,j + k > 0

et, d'après (13) appliquée à h, ceci entraîne h e2.
Donc g f~*.
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4.1.1. Il est clair que 9Jt1®9Ji1 aG1®Gx et il résulte de (7) et (8) que
9JÎ10SDÎ! est un sous-groupe de G^®GU donc de G2.

On voit immédiatement que 93^0931! c=93t2. Par suite 93^093^ est un
sous-groupe de 93t2.

Eétant l'endomorphisme de G2 considéré au§ 3, soit 5R2 93t2n£'~1 (e2).

yi2 est un sous-groupe de G2, comme intersection de deux sous-groupes,
donc est un sous-groupe de 93l2.

93î2 est produit direct de 5R2 et 93t1®9311.

En effet, on a vu au § 3 que G2 est produit direct de E~* (e2) et Gl®Gl
et que, dans l'expression d'une fonction / de G2 sous la forme

f — g •* h,où g eE"1(e2)ete Gl®Gl

on a h E(f)et g =f* h

Mais on voit immédiatement que, si /g93Z2, E (/) e 93^0931!. Donc,
si fe 9CR2, A g 93^093^ et par suite heïR2, geWfl2 et finalement g e 9^2.

De plus, l'expression de / sous la forme

est unique parce que 5R2c:E-1 (e2) et 931^931! c:G1®G1.
On voit de suite que 9^2 est l'ensemble des fonctions g de 93l2 qui satisfont

à

Il est classique d'utiliser les fonctions de comme opérateurs dans

l'espace vectoriel des fonctions complexes définies sur l'intervalle [1, + oo[,

espace vectoriel que nous désignerons par X1 :

a étant une fonction de et F une fonction de Xu on désigne par
a±F, par exemple, la fonction G de X1 définie par

On peut de même utiliser les fonctions de sé2 comme opérateurs dans

l'espace vectoriel X2 des fonctions complexes de deux variables réelles >1.

/ g* h où g g 9^2 et h g 9Jt1®9J{1

g (pJ\ pk) 0 quand j ou k 0 mais j+k>0
ou, ce qui revient au même, à

g (m, n) 0 quand {p | pjm } # {p | pjn }

5. Fonctions de sé2 comme opérateurs
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