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Si maintenant on a (1), on voit qu'il est possible de déterminer g de façon

que l'on ait (2) quels que soient m et 72>1.

On détermine g {m, n) pour m et n quelconques ^1 en utilisant une

récurrence sur n et, pour chaque n, une récurrence sur m.

On détermine d'abord g (m, 1) pour tous les 1 en prenant

(3) 0(M) /(M)
puis, pour m> 1,

d> 1

Ensuite, g (m, «) étant déjà déterminé pour n^q et m quelconque >1,
on détermine g (m, #+1) pour tous les m>l en prenant

(5) 0(1,4 + 1) =-77^ Z
d> 1

puis, pour m> 1,

1 _ (m q+1
(6) g(m,g + l) - X/(1,1) A/m Vrfl «2

d2/<?+l
^l+^2>2

Il résulte de (3) et (4) que (2) a lieu pour n 1 et m quelconque >1.
Pour chaque #>1, il résulte de (5) et (6) que (2) a lieu pour n q+1 et

m quelconque >1.
Naturellement, l'ensemble des éléments inversibles de sé2 est un groupe

avec la convolution comme loi. Nous désignerons ce groupe par G2 et nous
désignerons de même par Gx le groupe des éléments inversibles de séx (qui
sont les fonctions arithmétiques telles que/(l) ^0).

Dans sé2 comme dans nous désignerons par/"* l'élément inverse
de j\ s'il existe.

3. G2 produit direct de deux de ses sous-groupes

hx et h2 étant deux fonctions de nous désignerons par h1®h2 la
fonction h de sé2 définie par

h (m, n) /q (m) h2 (n)
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A et B étant deux parties de sél9 A®B sera l'ensemble des éléments

h1®h2 de sél9 où hx e A et h2 e B.

Il est évident que G1®G1aG2 et que e1®el e2.

D'autre part, on voit immédiatement que, si fl9 gl9fl9 g2 e sél9 on a

(7) (A 0/2)* (01 ®02) (/l* 0l) 0 (A* 02)

et il en résulte que, si / et g e Gv

(8) (f®gy* =/-*
On voit ainsi que G1®G1 est un sous-groupe de G2.

On peut aussi le voir en remarquant que c'est l'image de G2 par un certain
endomorphisme.

En effet, considérons l'application E de G2 dans stf2 qui à la fonction /
de G2 fait correspondre la fonction h définie par

,,s.him.n) /( i,i)
On voit que E est un endomorphisme de G2:

D'abord, il est évident que, quel que soit fe G29 E(f)eG2.
D'autre part, quels que soient / et g e G2,

E{Uq) E (/) % E(g)

L'image de G2 par E est Gi®G1 car, d'une part, il est clair que, quel

que soit fe G29 E (/) e G1®GU d'autre part, on voit immédiatement

que, si feG1®Gl9E{f)^f.
Il est à noter que ces propriétés entraînent que E2 E.

Alors, d'après un résultat classique, G2 est le produit direct du noyau
E1 (e2) de £ et de £ (G2) G1®G1 :

Toute f e G2 peut se mettre de façon unique sous la forme

(9) f=g*h, où g eE'1(e2)etheGl®Gl.

Plus précisément, on a

h E(f)etg=f^h~*.
En effet, si get hsont ainsi déterminés, on a bien f g* h, h appartient

à G1®Gl9 et on a

E(f)E(g)*E(h) E (g)E(g).E(f),
de sorte que E (g) e2.
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D'autre part, si on a (9), on a nécessairement

h E(f)carE (h) h

et E(f) =E(g)*E(h) =e2*E(h) EQi).

On voit de -suite que E_1 (e2) est l'ensemble des g e G2 telles que

S (M) 1,
g (m, 1) 0 pour m > 1

et =0 pour«>l."
On a ainsi le résultat suivant:
A toute fonction/ de G2 correspond une fonction g unique satisfaisant à

*(U)=1'
g (m, 1) 0 pourm>l et g(l,n) 0 pour«>l,

et telle que l'on ait pour m et 1

do» /(-»,») -jh)l\• 1)/(1 • s) •

d2ln

On peut supprimer dans cet énoncé la condition g(l, 1) 1, car elle

est une conséquence de (10) pour m n 1. On peut aussi supprimer

dans (10) le facteur
^

en multipliant la fonction g par ce facteur. On

obtient ainsi l'énoncé suivant:
A toute fonction/ de G2 correspond une fonction g unique satisfaisant à

(11) g (m, 1) 0 pour m> 1 et g (1, ri) 0 pour n> 1

et telle que l'on ait pour m et 1

(12) £ g(d1,d21)^(1' J") '

d2/n

4. Fonctions multiplicatives et fonctions additives

La fonction / de sé2 sera dite multiplicative si l'on a

/(M) 1


	3. $G_2$ PRODUIT DIRECT DE DEUX DE SES SOUS-GROUPES

