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Si maintenant on a (1), on voit qu’il est possible de déterminer g de fagon
que ’on ait (2) quels que soient m et n>1.

On détermine g (m, n) pour m et n quelconques >1 en utilisant une
récurrence sur z et, pour chaque n, une récurrence sur .

On détermine d’abord g (m, 1) pour tous les m>>1 en prenant

1) =
(3) g(L, 1) A0
puis, pour m>1,
1 m
(4) g(m,1) = —f(l,l),f,\;,,f(d’l)g<§’l>'
d>1

Ensuite, g (m, n) étant déja déterminé pour n<q et m quelconque >1,
on détermine g (m, g-+1) pour tous les m>1 en prenant

q+1
— 1,d 1, —
f(l,l)d/c;lf( )g< d )

d>1

(5) g(l,q+1) =

puis, pour m>1,

1 m q+1
(6) g(m,g+1) = — f(d,d)g(——, )
f(1,1) Em DU\, d,
do/qg+1
di+do>?2

Il résulte de (3) et (4) que (2) a lieu pour n = 1 et m quelconque >1.
Pour chaque g>1, il résulte de (5) et (6) que (2) a lieu pour n = g-+1 et
m quelconque >1.

Naturellement, I’ensemble des €léments inversibles de .7, est un groupe
avec la convolution comme loi. Nous désignerons ce groupe par G, et nous
désignerons de méme par G, le groupe des éléments inversibles de &/, (qui
sont les fonctions arithmétiques telles que f (1) #0).

Dans &/, comme dans &/, nous désignerons par f~ * I’élément inverse
de f, s’il existe.

3. G2 PRODUIT DIRECT DE DEUX DE SES SOUS-GROUPES

hy; et h, €tant deux fonctions de .7, nous désignerons par h; ®#h, la
fonction 4 de &, définie par

h (m, n) = hy (m) h, (n) .
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A et B ¢tant deux parties de o/,, A® B sera I’ensemble des éléments
h ®h, de o,, ou hy € A et h, € B.

Il est évident que G, ®G,; =G, et que e, Re; = e,.

D’autre part, on voit immédiatement que, si f, g, /4, &, € %/, On a

(7 (f1®12) « (91 ®92) = (fix91) ® (f24 92)
et 1l en résulte que, si fet ge Gy,
(8) (f®g) * =f"*®g™*.

On voit ainsi que G;®G; est un sous-groupe de G,.

On peut aussi le voir en remarquant que c’est I'image de G, par un certain
endomorphisme.

En effet, considérons I'application £ de G, dans </, qui a la fonction f
de G, fait correspondre la fonction 4 définie par

_ S 0 f(1m)
fany

On voit que E est un endomorphisme de G,:
D’abord, il est évident que, quel que soit fe G,, E(f) € G,.
D’autre part, quels que soient f et g€ G,,

E(fi9) = E(f)+ E(9).

L’image de G, par E est G;®G, car, d’une part, il est clair que, quel
que soit fe G,, E (f) € G, ®G,, d’autre part, on voit immédiatement
que, si fe G;®G,, E(f) = f.

Il est & noter que ces propriétés entrainent que E? = E.

Alors, d’apres un résultat classique, G, est le produit direct du noyau
E~!(e,)) de E et de E(G,) = G,RG;:

Toute f'e G, peut se mettre de fagon unique sous la forme

h(m,n)

9) f=g,h, ou geE'(e,) et heGRG.
Plus précisément, on a
h=E(f) et g=fh*.

En effet, si g et 4 sont ainsi déterminés, on a bien f = g, h, h appartient
a G;®Gy, et on a

E(f) = E(9)+ E(h) = E(9)« E*(f) = E(@)«E(f),
de sorte que E (g) = e,.
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D’autre part, si on a (9), on a nécessairement
h=E(f) car E(h) =
et E(f) =E@+E(M) = e E(W) = E(h).
On voit de suite que E~ ! (e,) est I'ensemble des g € G, telles que

g1,1) =1,
g(m,1) =0 pourm>1
et g(l,n) =0 pourn>1.

|

On a ainsi le résultat suivant:
A toute fonction f de G, correspond une fonction g unique satisfaisant a

g, ) =1
g(m,1) =0 pour m>1 et g(1,n) =0 pourn>1,

et telle que 'on ait pour m et n>1

n
1,d2 1,'—“‘ .
7, 1>d§ng( )f( )f< d2>

dafn

(10) f(m,n) =

On peut supprimer dans cet énoncé la condition g (1, 1) = 1, car elle
est une conséquence de (10) pour m = n = 1. On peut aussi supprimer

dans (10) le facteur en multipliant la fonction g par ce facteur. On

2 b

obtient ainsi I’énoncé suivant:
A toute fonction f de G, correspond une fonction g unique satisfaisant a

(11) g(m,1) =0pourm>1 et g(l,n) = 0pourn>1l

et telle que 'on ait pour m et n>1

(12) f(m,n) = ) g(dladz)f< )f(l ; -5—)
di/m 1 2
do/n

4. FONCTIONS MULTIPLICATIVES ET FONCTIONS ADDITIVES

La fonction f de 7, sera dite multiplicative si ’on a

fa, 1 =
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