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SUR LES FONCTIONS DE PLUSIEURS ENTIERS
STRICTEMENT POSITIFS

Hubert Delange

A la mémoire de J. Karamata

1. Introduction

Le but de cet article est d'étendre aux fonctions de plusieurs entiers

strictement positifs quelques notions usuelles relatives aux fonctions d'un
entier strictement positif — communément appelées « fonctions arithmétiques

» — et d'en étudier les propriétés élémentaires.

Nous désignerons par séq l'ensemble des fonctions réelles ou complexes
de q entiers strictement positifs.

Pour la simplicité de l'exposé, nous nous bornerons au cas où q - 2, mais

il n'y a aucune différence essentielle entre le cas où q 2 et le cas où q>2.
Dans toute la suite, aetb étant deux entiers strictement positifs, le symbole

(a, b), considéré isolément, désigne, comme il est d'usage, le plus grand
commun diviseur de a et b.

a\b signifie « a divise b ». ajfb signifie « a ne divise pas b ».

La lettre p désigne toujours un nombre premier.

Il est classique de munir d'une structure d'algèbre sur C de la façon
suivante :

L'addition de deux éléments de sé^ et la multiplication d'un élément de

sé\ par un nombre complexe sont définis comme il est habituel pour les
fonctions complexes définies sur un ensemble donné — ce qui fait de
l'ensemble de ces fonctions un espace vectoriel sur C. On prend comme
multiplication de deux éléments de s/1 la convolution définie par
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On peut faire la même chose pour sé2-

On définit encore l'addition de deux éléments de sé2 et la multiplication
d'un élément de stf2 par un nombre complexe à la manière habituelle.

On prend comme multiplication de deux éléments de la convolution
définie comme suit:

/*g est la fonction h définie par

171 ïl
h(m, n) X/(di ,d2)

dilm
d2jn

On vérifie immédiatement que la convolution est commutative,
associative et distributive par rapport à l'addition, et que, quels que soient /
et g e stf2 et a e C, on a

(a/)* /* (ag) a (/* g)

On a donc ainsi fait de sé2 une algèbre sur C.

2.1. On voit immédiatement que, comme sésé2 possède une unité.
C'est la fonction e2 définie par

e2 (m, n)
1 si m n 1,

0 dans le cas contraire x).

On voit aussi que les éléments inversibles de sé2 sont les fonctions /
pour lesquelles

(1) ./(!,!) ^0.
En effet, d'après la définition de la convolution, pour que /* g e2,

il faut et il suffit que l'on ait

/ Yjfi fi
(2) X f(d1,d2)g— —

d\!m U*2J
d2ln

quels que soient m et n >1.
Pour m n 1, ceci se réduit à

/(l, 1)0(1,1) - 1,

et on voit ainsi que la condition (1) est nécessaire pour que/ soit inversible.

i) Nous désignerons par e\ l'unité de On a

l pour n > 1

>. f 1 pour n 1

W 0
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Si maintenant on a (1), on voit qu'il est possible de déterminer g de façon

que l'on ait (2) quels que soient m et 72>1.

On détermine g {m, n) pour m et n quelconques ^1 en utilisant une

récurrence sur n et, pour chaque n, une récurrence sur m.

On détermine d'abord g (m, 1) pour tous les 1 en prenant

(3) 0(M) /(M)
puis, pour m> 1,

d> 1

Ensuite, g (m, «) étant déjà déterminé pour n^q et m quelconque >1,
on détermine g (m, #+1) pour tous les m>l en prenant

(5) 0(1,4 + 1) =-77^ Z
d> 1

puis, pour m> 1,

1 _ (m q+1
(6) g(m,g + l) - X/(1,1) A/m Vrfl «2

d2/<?+l
^l+^2>2

Il résulte de (3) et (4) que (2) a lieu pour n 1 et m quelconque >1.
Pour chaque #>1, il résulte de (5) et (6) que (2) a lieu pour n q+1 et

m quelconque >1.
Naturellement, l'ensemble des éléments inversibles de sé2 est un groupe

avec la convolution comme loi. Nous désignerons ce groupe par G2 et nous
désignerons de même par Gx le groupe des éléments inversibles de séx (qui
sont les fonctions arithmétiques telles que/(l) ^0).

Dans sé2 comme dans nous désignerons par/"* l'élément inverse
de j\ s'il existe.

3. G2 produit direct de deux de ses sous-groupes

hx et h2 étant deux fonctions de nous désignerons par h1®h2 la
fonction h de sé2 définie par

h (m, n) /q (m) h2 (n)
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