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SUR LES FONCTIONS DE PLUSIEURS ENTIERS
STRICTEMENT POSITIES

Hubert DELANGE

A la mémoire de J. Karamata
1. INTRODUCTION

Le but de cet article est d’étendre aux fonctions de plusieurs entiers
strictement positifs quelques notions usuelles relatives aux fonctions d’un
entier strictement positif — communément appelées « fonctions arithmé-
tiques » — et d’en étudier les propriétés élémentaires.

Nous désignerons par .o/, 'ensemble des fonctions réelles ou complexes
de g entiers strictement positifs.

Pour la simplicité de I’exposé, nous nous bornerons au cas ou g = 2, mais
il n’y a aucune différence essentielle entre le cas ot ¢ = 2 et le cas ou g>2.

Dans toute la suite, a et b étant deux entiers strictement positifs, le sym-
bole (a, b), considéré isolément, désigne, comme il est d’usage, le plus grand
commun diviseur de a et b.

alb signifie « a divise b». atb signifie « a ne divise pas b ».

La lettre p désigne toujours un nombre premier.

2. &/, COMME ALGEBRE SUR C

Il est classique de munir .7y d’une structure d’algébre sur C de la facon
suivante:

L’addition de deux éléments de 7, et la multiplication d’un élément de
</, par un nombre complexe sont définis comme il est habituel pour les
fonctions complexes définies sur un ensemble donné — ce qui fait de I’en-
semble de ces fonctions un espace vectoriel sur C. On prend comme multi-
plication de deux éléments de <7, la convolution définie par

Fe ) = Y f(d)g @

d/n
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On peut faire la méme chose pour «7,.

On définit encore ’addition de deux éléments de o7, etla multiplication
d’un élément de o/, par un nombre complexe a la maniére habituelle.

On prend comme multiplication de deux éléments de </, la convolution
définie comme suit:

f « g est la fonction A définie par

m n
h(msn) = Z f(dladZ)g PR
difm dy d,
dg/ll

On vérifie immédiatement que la convolution est commutative, asso-
ciative et distributive par rapport a ’addition, et que, quels que soient f
et ge, et aeC, on a

(f)s g = fo (2g) = a(f 9) -
On a donc ainsi fait de 7, une algebre sur C.
2.1. On voit immédiatement que, comme 27, &/, possede une unité.
C’est la fonction e, définie par

lsim=n=1,

e, (m, n) = {

0 dans le cas contraire 1).

On voit aussi que les éléments inversibles de &7, sont les fonctions f
pour lesquelles

(1) f(1,1) #0.

En effet, d’aprés la définition de la convolution, pour que [, g = e,,
il faut et il suffit que 'on ait

) 3 fdg (a’f , a—) = ¢, (m, n)
i/m 1 2
da/n

quels que soient m et n >1.
Pour m = n = 1, ceci se réduit a

et on voit ainsi que la condition (1) est nécessaire pour que f soit inversible.

1) Nous désignerons par ey I'unité de &1. On a

ey tn)y = lpourn=1,

Opourn>1.
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Si maintenant on a (1), on voit qu’il est possible de déterminer g de fagon
que ’on ait (2) quels que soient m et n>1.

On détermine g (m, n) pour m et n quelconques >1 en utilisant une
récurrence sur z et, pour chaque n, une récurrence sur .

On détermine d’abord g (m, 1) pour tous les m>>1 en prenant

1) =
(3) g(L, 1) A0
puis, pour m>1,
1 m
(4) g(m,1) = —f(l,l),f,\;,,f(d’l)g<§’l>'
d>1

Ensuite, g (m, n) étant déja déterminé pour n<q et m quelconque >1,
on détermine g (m, g-+1) pour tous les m>1 en prenant

q+1
— 1,d 1, —
f(l,l)d/c;lf( )g< d )

d>1

(5) g(l,q+1) =

puis, pour m>1,

1 m q+1
(6) g(m,g+1) = — f(d,d)g(——, )
f(1,1) Em DU\, d,
do/qg+1
di+do>?2

Il résulte de (3) et (4) que (2) a lieu pour n = 1 et m quelconque >1.
Pour chaque g>1, il résulte de (5) et (6) que (2) a lieu pour n = g-+1 et
m quelconque >1.

Naturellement, I’ensemble des €léments inversibles de .7, est un groupe
avec la convolution comme loi. Nous désignerons ce groupe par G, et nous
désignerons de méme par G, le groupe des éléments inversibles de &/, (qui
sont les fonctions arithmétiques telles que f (1) #0).

Dans &/, comme dans &/, nous désignerons par f~ * I’élément inverse
de f, s’il existe.

3. G2 PRODUIT DIRECT DE DEUX DE SES SOUS-GROUPES

hy; et h, €tant deux fonctions de .7, nous désignerons par h; ®#h, la
fonction 4 de &, définie par

h (m, n) = hy (m) h, (n) .
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