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SUR LES FONCTIONS DE PLUSIEURS ENTIERS
STRICTEMENT POSITIES

Hubert DELANGE

A la mémoire de J. Karamata
1. INTRODUCTION

Le but de cet article est d’étendre aux fonctions de plusieurs entiers
strictement positifs quelques notions usuelles relatives aux fonctions d’un
entier strictement positif — communément appelées « fonctions arithmé-
tiques » — et d’en étudier les propriétés élémentaires.

Nous désignerons par .o/, 'ensemble des fonctions réelles ou complexes
de g entiers strictement positifs.

Pour la simplicité de I’exposé, nous nous bornerons au cas ou g = 2, mais
il n’y a aucune différence essentielle entre le cas ot ¢ = 2 et le cas ou g>2.

Dans toute la suite, a et b étant deux entiers strictement positifs, le sym-
bole (a, b), considéré isolément, désigne, comme il est d’usage, le plus grand
commun diviseur de a et b.

alb signifie « a divise b». atb signifie « a ne divise pas b ».

La lettre p désigne toujours un nombre premier.

2. &/, COMME ALGEBRE SUR C

Il est classique de munir .7y d’une structure d’algébre sur C de la facon
suivante:

L’addition de deux éléments de 7, et la multiplication d’un élément de
</, par un nombre complexe sont définis comme il est habituel pour les
fonctions complexes définies sur un ensemble donné — ce qui fait de I’en-
semble de ces fonctions un espace vectoriel sur C. On prend comme multi-
plication de deux éléments de <7, la convolution définie par

Fe ) = Y f(d)g @

d/n




— 78 —

On peut faire la méme chose pour «7,.

On définit encore ’addition de deux éléments de o7, etla multiplication
d’un élément de o/, par un nombre complexe a la maniére habituelle.

On prend comme multiplication de deux éléments de </, la convolution
définie comme suit:

f « g est la fonction A définie par

m n
h(msn) = Z f(dladZ)g PR
difm dy d,
dg/ll

On vérifie immédiatement que la convolution est commutative, asso-
ciative et distributive par rapport a ’addition, et que, quels que soient f
et ge, et aeC, on a

(f)s g = fo (2g) = a(f 9) -
On a donc ainsi fait de 7, une algebre sur C.
2.1. On voit immédiatement que, comme 27, &/, possede une unité.
C’est la fonction e, définie par

lsim=n=1,

e, (m, n) = {

0 dans le cas contraire 1).

On voit aussi que les éléments inversibles de &7, sont les fonctions f
pour lesquelles

(1) f(1,1) #0.

En effet, d’aprés la définition de la convolution, pour que [, g = e,,
il faut et il suffit que 'on ait

) 3 fdg (a’f , a—) = ¢, (m, n)
i/m 1 2
da/n

quels que soient m et n >1.
Pour m = n = 1, ceci se réduit a

et on voit ainsi que la condition (1) est nécessaire pour que f soit inversible.

1) Nous désignerons par ey I'unité de &1. On a

ey tn)y = lpourn=1,

Opourn>1.
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Si maintenant on a (1), on voit qu’il est possible de déterminer g de fagon
que ’on ait (2) quels que soient m et n>1.

On détermine g (m, n) pour m et n quelconques >1 en utilisant une
récurrence sur z et, pour chaque n, une récurrence sur .

On détermine d’abord g (m, 1) pour tous les m>>1 en prenant

1) =
(3) g(L, 1) A0
puis, pour m>1,
1 m
(4) g(m,1) = —f(l,l),f,\;,,f(d’l)g<§’l>'
d>1

Ensuite, g (m, n) étant déja déterminé pour n<q et m quelconque >1,
on détermine g (m, g-+1) pour tous les m>1 en prenant

q+1
— 1,d 1, —
f(l,l)d/c;lf( )g< d )

d>1

(5) g(l,q+1) =

puis, pour m>1,

1 m q+1
(6) g(m,g+1) = — f(d,d)g(——, )
f(1,1) Em DU\, d,
do/qg+1
di+do>?2

Il résulte de (3) et (4) que (2) a lieu pour n = 1 et m quelconque >1.
Pour chaque g>1, il résulte de (5) et (6) que (2) a lieu pour n = g-+1 et
m quelconque >1.

Naturellement, I’ensemble des €léments inversibles de .7, est un groupe
avec la convolution comme loi. Nous désignerons ce groupe par G, et nous
désignerons de méme par G, le groupe des éléments inversibles de &/, (qui
sont les fonctions arithmétiques telles que f (1) #0).

Dans &/, comme dans &/, nous désignerons par f~ * I’élément inverse
de f, s’il existe.

3. G2 PRODUIT DIRECT DE DEUX DE SES SOUS-GROUPES

hy; et h, €tant deux fonctions de .7, nous désignerons par h; ®#h, la
fonction 4 de &, définie par

h (m, n) = hy (m) h, (n) .
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A et B ¢tant deux parties de o/,, A® B sera I’ensemble des éléments
h ®h, de o,, ou hy € A et h, € B.

Il est évident que G, ®G,; =G, et que e, Re; = e,.

D’autre part, on voit immédiatement que, si f, g, /4, &, € %/, On a

(7 (f1®12) « (91 ®92) = (fix91) ® (f24 92)
et 1l en résulte que, si fet ge Gy,
(8) (f®g) * =f"*®g™*.

On voit ainsi que G;®G; est un sous-groupe de G,.

On peut aussi le voir en remarquant que c’est I'image de G, par un certain
endomorphisme.

En effet, considérons I'application £ de G, dans </, qui a la fonction f
de G, fait correspondre la fonction 4 définie par

_ S 0 f(1m)
fany

On voit que E est un endomorphisme de G,:
D’abord, il est évident que, quel que soit fe G,, E(f) € G,.
D’autre part, quels que soient f et g€ G,,

E(fi9) = E(f)+ E(9).

L’image de G, par E est G;®G, car, d’une part, il est clair que, quel
que soit fe G,, E (f) € G, ®G,, d’autre part, on voit immédiatement
que, si fe G;®G,, E(f) = f.

Il est & noter que ces propriétés entrainent que E? = E.

Alors, d’apres un résultat classique, G, est le produit direct du noyau
E~!(e,)) de E et de E(G,) = G,RG;:

Toute f'e G, peut se mettre de fagon unique sous la forme

h(m,n)

9) f=g,h, ou geE'(e,) et heGRG.
Plus précisément, on a
h=E(f) et g=fh*.

En effet, si g et 4 sont ainsi déterminés, on a bien f = g, h, h appartient
a G;®Gy, et on a

E(f) = E(9)+ E(h) = E(9)« E*(f) = E(@)«E(f),
de sorte que E (g) = e,.
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D’autre part, si on a (9), on a nécessairement
h=E(f) car E(h) =
et E(f) =E@+E(M) = e E(W) = E(h).
On voit de suite que E~ ! (e,) est I'ensemble des g € G, telles que

g1,1) =1,
g(m,1) =0 pourm>1
et g(l,n) =0 pourn>1.

|

On a ainsi le résultat suivant:
A toute fonction f de G, correspond une fonction g unique satisfaisant a

g, ) =1
g(m,1) =0 pour m>1 et g(1,n) =0 pourn>1,

et telle que 'on ait pour m et n>1

n
1,d2 1,'—“‘ .
7, 1>d§ng( )f( )f< d2>

dafn

(10) f(m,n) =

On peut supprimer dans cet énoncé la condition g (1, 1) = 1, car elle
est une conséquence de (10) pour m = n = 1. On peut aussi supprimer

dans (10) le facteur en multipliant la fonction g par ce facteur. On

2 b

obtient ainsi I’énoncé suivant:
A toute fonction f de G, correspond une fonction g unique satisfaisant a

(11) g(m,1) =0pourm>1 et g(l,n) = 0pourn>1l

et telle que 'on ait pour m et n>1

(12) f(m,n) = ) g(dladz)f< )f(l ; -5—)
di/m 1 2
do/n

4. FONCTIONS MULTIPLICATIVES ET FONCTIONS ADDITIVES

La fonction f de 7, sera dite multiplicative si ’on a

fa, 1 =




et f(m' m’',nn'y=fm,n)fm',n") lorsque (m'n', m" n'’) =121.
Elle sera dite additive si 'on a
S m’,n'n’")y = fm',n) + f(m"’,n") lorsque (m' n',m" n'’) =1
(ce qui entraine f(1,1) = 0, comme on le voit en prenant m' = m'’ =
=n =n"=1).

Le plus grand commun diviseur et le plus petit commun multiple de m
et n sont des fonctions multiplicatives de m et n. Il en est de méme de la
fonction égale & 1 quand (m, n) = 1 et a zéro quand (m, n)> 1.

Le nombre des diviseurs premiers communs a m et n, la somme de ces
diviseurs, sont des fonctions additives de m et n.

On voit immédiatement qu’une fonction multiplicative, ou additive, est
complétement déterminée quand on connait ses valeurs pour tous les
couples [p’, p*], ol p est un nombre premier et j et k sont des entiers >0
tels que j+kA>0.

Plus précisément, soit p, la fonction de <7, définie par

o () ={1r si. pkn,
pP

si p'fn e ptlin,r>0.

Si f est multiplicative, on a

(13) f(m,n) =[] flp,(m),p,m)].

plmn
Si f est additive, on a

f(ma n) = Z f[pp(’n)app(n)] .

p/mn

Dans les deux cas, les valeurs de f(p’, p*) peuvent étre choisies arbi-
trairement pour tous les nombres premiers p et tous les couples [, k] d’en-
tiers >0 tels que j+k>0.

4.1. Nous désignerons par Wi, ’ensemble des fonctions de 7,
qui sont multiplicatives, I, désignant ’ensemble des fonctions multipli-
catives d’un entier >0.

Il est évident que I, = G,. En fait, I, est un sous-groupe de G,, comme
I, est un sous-groupe de G;.

Tout d’abord, on voit immédiatement que, si f et ge M,, f.g e M,.

En effet, si (m'n’,m"n’)=1, on a (m',m")=@m,n")=1 et on
obtient tous les diviseurs de m’ m’’, chacun une fois, en formant tous les

1) La condition f (1, 1) = 1 est conséquence de la deuxiéme condition si ’on suppose que f n’est pas
jdentiquement nulle. Nous I'introduisons pour écarter la fonction identiquement nulle.
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produits d'; d”’; oud’;/m’ etd”,/m", et tous les diviseurs de n' n'’, chacun une
: . ’ ” ‘ ’ ” 17
fois, en formant tous les produits d, d,, ou d,/n’ et d,/n".
On a d’ailleurs

d, d’ d”d” m' n' m'n" _
(12:12)'— d1d2 dld;—‘

. o e . . ot o o
On voit ainsi que, si# = f, g, avec fet ge My, etsi (m' n',m" n"’') =1,
on a

h ) Z f(d’d” d, d”) (ml m/l nl nll)
m/ n/’ m// n// — , g i — y
( punr?] 0 G DI\ G
d’oln’, d"gln’’
Z f(d d ) <mr />f(d d ) <mll n//>
= 5 g s g g
d'yIm’,d"y[m”’ . d1 dz b d1 dz
d'gln’, d"sn”
[ ’ nr 1 m// nr/ ]
=y f(dl,dz)g( ~—,>'H{ Y f(dl,d;z)g(d —>'
{d’1/m’ d1 dz J|d”1/m 1 2 i
ld'2/n/ l d"g/n J

= h(m',n"Yh(m",n").

Pour montrer que, si feM,, f~* € IM,, on peut procéder de la fagon
suivante.

On montre que, pour chaque nombre premier p, on peut déterminer les
nombres a,(j, k), ou j et k sont des entiers >0 et j+k>0, de fagon que
I’on ait pour j et k>0 et j+k>0

(14) f@e.MH+ Y f@ 7, (LK) =
o
j tk'>0

Pour cela, on fait un raisonnement semblable a celui par lequel on a
montré au § 2.1 que, si fe o/, et f(1,1) # 0, f est inversible.
Ceci dit, on peut déterminer une fonction g de I, par

g, p") =a,(,k) pour j=>0,k>0,j+k>0.
On sait que f', g € M,. Mais (14) montre que, si h = f, g, on a
h(p',p*) =0 pour j>0,k>0,j+k>0,

et, d’apres (13) appliquée a A, ceci entraine i = e,.
Donc g =f"*.
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4.1.1. Il est clair que M, @M, =G, ®G, et il résulte de (7) et (8) que
M, @Iy est un sous-groupe de G;®G,, donc de G,.

On voit immédiatement que I, @I, =IM,. Par suite N, @M, est un
sous-groupe de IN,.

E étant ’endomorphisme de G, considéré au§ 3, soit i, = W,NE "1 (e,).

I, est un sous-groupe de G,, comme intersection de deux sous-groupes,
donc est un sous-groupe de M,.

i, est produit direct de N, et I, @IN,.

En effet, on a vu au § 3 que G, est produit direct de £ (e,) et G,®G,
et que, dans I’expression d’une fonction f de G, sous la forme

f=g4h, o0 geE'(e,) e heG®G,,

onah=E(f)etg=f,h*

Mais on voit immédiatement que, si feIM,, E(f)e M, ®W,. Donc,
si feIM,, he M @M, et par suite heIN,, ge W, et finalement g e N,.
De plus, 'expression de f sous la forme

f=g84h, o geMN, et heIQM,,

est unique parce que N,=E~! (e,) et M, @M, =G, ®G,.
On voit de suite que I, est ’ensemble des fonctions g de M, qui satis-
font a
g(p’,p") = 0 quand j ou k = 0 mais j+k>0,

ou, ce qui revient au méme, a

g(m,n)=0 quand {p|p/m} # {p|pn} .

5. FONCTIONS DE &/, COMME OPERATEURS

Il est classique d’utiliser les fonctions de &/, comme opérateurs dans
I’espace vectoriel des fonctions complexes définies sur I'intervalle [1, 4 oo],
espace vectoriel que nous désignerons par Xj:

a étant une fonction de /; et F une fonction de X;, on désigne par
al F, par exemple, la fonction G de X; définie par

Gx) =Y a(n)FG>.

n=x

On peut de méme utiliser les fonctions de 7, comme opérateurs dans
I’espace vectoriel X, des fonctions complexes de deux variables réelles >1.
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a étant une fonction de &7, et F une fonction de X,, on désignera par
alF la fonction G de X, définie par

m=x m n
n=y

G(x,y) = Y a(m,n)F(f,X>.

a étant fixée, Papplication F—a L F est une application linéaire de X,
dans X,.
De plus, on vérifie immédiatement les propriétés suivantes:

a) Quelle que soit Fe X,, e, LF = F;
b) Quels que soient Fe X,, ae o, et LeC,
(@) LF = A (aLF);
¢) Quelles que soient Fe X,, a et be ,,
al (bLF) : (a, b)LF.

6. FONCTIONS GENERATRICES

6.1. A la fonction f de ./, nous associons la série double

y f(m,n),

s .8
m,n==>1 m-n

ou s et s’ sont deux variables complexes.

S’il existe des valeurs de s et s” pour lesquelles cette série est convergente,
la fonction qu’elle représente est dite « fonction génératrice » de f.

Si les séries associées aux fonctions fet g de &7, sont absolument conver-
gentes pour #s = o et As’ = o', il en est de méme de la série associée a
f« g et sa somme est le produit des sommes des deux premiéres.

Pour le voir, il suffit de considérer la série quadruple

Z f(my,ny) g (my,ny)

S s _ .8 _. s
mi,me,ny,ne=>1 mymyn;n,

b]

qui est absolument convergente pour #s = ¢ et #s’ = ¢’, et de grouper
ensemble les termes pour lesquels les produits m, m, et les produits n, 1,
ont les mémes valeurs.

Ainsi, comme dans le cas d’une variable, la convolution correspond &
la multiplication des fonctions génératrices.
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6.2. f étant une fonction de IN,, et ¢ et ¢’ étant deux nombres réels,
silon a

j k
lf(p,p)|<+

)3

jc+kec’ ?
Pk pJG i
k=0
j—k>0
la série
3 f(m,n)
mo1 m'n®’

est absolument convergente pour Zs > ¢ et Zs' > ¢’ et sa somme est égale
a la valeur du produit infini absolument convergent

n| s 222

Jjs+ks’
p Ljk=0 D

Pour établir ce résultat, il suffit de prouver que, si ge Wi, et si I'on a

Y lg(pl,pH] < + o,
p.Jk
j k=0
j—k>0

lasérie > g(m,n)estabsolument convergente et sa somme est égale a la

man=1

valeur du produit infini absolument convergent

(15) [T0 > a(p. 9]

7 . ) 14 s f(m, n)
Le résultat vouluv s’en déduira en prenantg (m,n) ="——— .
m® n

Soit py, Pas s Dby ... la suite des nombres premiers rangés par ordre
croissant.
Le produit infini (15) s’écrit

ﬁ [ > g(pi,pf):I-

r=1 | j,k=0

I1 est absolument convergent car, pour chaque 7,

S gplph) =1l =1 Y gplphl< Y lal.p)l,
j e — i k==0 i, k=0
HE=D J']—k>0 jj+k>0

de sorte que
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+ 0

S Y glph)—-11<+o.

r=1 jk>0
On voit en méme temps que le produit infini
+ o0 )
i 5 sati]
r=1 L j k=0

est convergent. Soit P sa valeur.
Soient maintenant g, et A, les fonctions de 9, déterminées par
g (0. ) = g(@,p) st p<p.,
T 0 si p>p,,
et

: g, p") si p=p.,
h,(p', ) = {0 .
sl p #p,.
(jet k >0,j+ k> 0).
Il résulte de la formule (13) que, pour chaque couple [m, n}, g, (m, n)
tend vers g (m, n) quand r tend vers + oo.

De plus, on voit que, pour chaque r > 1,

Gre1 = Grs oyt et 19r+1] = 19, « [hes1],

et on en déduit, par récurrence sur r, que, pour chaque r > 1, la série
> g (m, n) est absolument convergente et on a

(16) Sl (mm| = n[ S 19 (b q
m,n=x1 g=1 Lj k>0

et

(17) Y, g.(m,n) = H[ > g(pé,p’q‘)]
m,n==1 g=1 Ljk=0

Il résulte de (16) que, quel que soit x > 1, on a pour tout r > 1

> lg.(mn)| <P.

mn=x

En faisant tendre r vers - oo, on obtient a4 la limite

2 lg(m,m| <P

mn=x
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et il en résulte que la série ) |g(m, n)| est convergente.
myn>1
Maintenant, d’aprés la formule (13), pour chaque couple [m, n],’ion a
!g,(m, n)| <|g(m,n)| quel quesoit r>1.
Alors (17) donne, par passage a la limite pour r tendant vers -+ co,
+ o0 )
2 g(m,n) =[] [ 2 g(pé,p’;)].
m,n=1 g=1 L jk=0

( Recu le 27 avril 1968)

H. Delange
Faculté des Sciences de I’Université de Paris a Orsay
91 - Orsay
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