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Théorème 6. 1)Qej/ m« chapeau de P, et S (Q) K u {0}. 2) Pour
A

toute f e P, f est continue et il existe sur G une mesure de Radon unique p ^ 0

telle que

f (x) J [x, t] dp (t) pour tout x e G

Démonstration. 1) Le lemme 4 montre que P — Q — {/e P : 11 /11 > 1}
est convexe, donc g, déjà convexe et compact, est un chapeau de P; c'est

même un chapeau universel en ce sens que P est réunion des nQ. Les
éléments extrémaux de g sont donc 0 et les éléments extrémaux de P de

norme 1 ; d'après le lemme 5, ce sont des caractères continus de G.

Inversement, si / est un caractère continu de G c'est, d'après le théorème

2, un élément extrémal du cône Pd des fonctions de type positif sur G

discret; comme Pc=Pd, c'est à fortiori un élément extrémal de P, donc

/e*(ß).
2) Tout f e Q, donc aussi tout feP, est résultante d'une mesure positive

p portée par le compact K u {0}, ou ce qui revient au même, portée
par K puisque toute mesure portée par 0 a une résultante nulle.

Autrement dit, pour toute a e L1 on a :

J/a dx j (j [x, t\ a (x) dx) dju (t)

Or soit g la fonction sur G définie par g (x) =i J [x, t] dp (t) ; elle est
continue et bornée, et la formule de Fubini montre que:

\gadx J (J [x, t] a (x) dx) dp (t),
d'où J fa dx J goc dx pour tout a e L1, d'où / g.

L'unicité de p a été démontrée ci-dessus en 3. a.

Le théorème de Bernstein et ses généralisations

Soit / une fonction réelle définie sur un intervalle ouvert I de R, de la
forme ] — oo, a[, où a est fini ou +co. Le théorème de Bernstein affirme
que si / a des dérivées de tous ordres et si / et ses dérivées sont positives, il
existe une mesure n ^ 0 (d'ailleurs unique) sur R+ telle que l'on ait pour
tout x e /:

/(x) - $etxdn(t).

Ce théorème, ainsi que ses généralisations dans diverses directions se
démontre simplement en utilisant la notion d'élément extrémal. Nous appli-
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querons cette méthode à l'étude des fonctions absolument monotones dans

un ouvert de R"; le théorème de Bernstein en sera un cas particulier.

Définition 7. Soit C un cône convexe de R" d'intérieur non vide; soit
Q un ouvert de R", et soit f une fonction numérique réelle sur Q.

On dit que f est C-absolument monotone si f ^ 0 et si pour toute famille
finie (a^) d'éléments de C, la fonction p * f (où p est le produit de convolution
des mesures (s0 — sai)) est positive en tout point de Q où elle est définie.

L'ensemble sé (Q, C) des fonctions C-absolument monotones dans Q
est évidemment un cône convexe de (Q, R), fermé pour la topologie de

la convergence simple, donc faiblement complet dans (Q, R).

Lemme 8. 1) Toute fonction E{.(.-absolument monotone sur un intervalle
ouvert Q de R est continue.

2) Toute f g sé (Q, C) est continue (où Q et C a R").

3) Toute famille (ff) d'éléments de 3F (Q, C) qui converge simplement en

tout point d'un sous-ensemble D partout dense de Q, converge uniformément
sur tout compact de Q.

Démonstration. 1) La condition (e0 — £a) */ê 0 pour a ^ 0 exprime

que Aa(x)=f(x)—/(x — a)^0 lorsque x et (x — a) e Q; donc /est croissante.
La condition (£0 — £b) * (e0 —ea) 0 exprime que Aa (x) est fonction

croissante de x. Donc si / est continue au point x, elle l'est aussi pour tout
y ^ x; et comme les points de continuité de/sont partout denses dans Q,

/ est continue.

2) Supposons, ce qu'on peut toujours faire en choisissant dans C les

vecteurs Uj de la base de R", que R" c: C; il s'agit alors de montrer que pour
tout pavé T Yi ßj\Œ f est continue sur P.

a) Utilisons le fait que dans P, Aa(x) f (x) — f (x—a) est fonction
croissante de x; ceci entraîne que:

0 £f(ß) -f(ß-a) sY(f(ß)-f(ß-ajUj)).
j= i

Or / est séparément continue par rapport à chaque variable, donc

(/(ß)~f (ß — aj uj)) tend vers 0 avec ah d'où la continuité surP au point ß.

b) Si l'oscillation de/dans un voisinage V de ß dans P est ^ s, l'inégalité
0 ^ / (x) — f (x — a) g / (ß) — f (ß —a) montre qu'elle est ^ s dans tout
translaté de V contenu dans P.

3) Comme les ft sont croissantes et convergent sur D, on peut les

supposer localement uniformément bornées. Si donc le filtre donné est un
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ultrafiltre °U, les fx convergent partout dans Q. Leur limite / appartient à

sé (Q, C), donc est continue. Montrons, avec les notations du (2), que la

convergence est uniforme sur tout pavé PczQ.

Il suffit de reprendre les inégalités du (2): Pour tout e>0, il existe des

ûj>0 tels que 0 ^f(ß) — /(ß — ajUj) ^ s. Les ûj étant fixés, il existe

un let tel que, pour tout ieX on ait |/—f\ ^ s aux points ß et

(ß — cij Uj). L'oscillation de ft est donc plus petite que 3m dans le petit pavé

{x: ß —a ^ ^ /?}; elle est donc plus petite que 3ns dans tout translaté
de ce pavé contenu dans P.

Quand le filtre donné n'est pas un ultrafiltre, la convergence annoncée

a lieu pour tout ultrafiltre °ll plus fin que#", et comme la limite/est donnée

sur D, f ne dépend pas de d'où la propriété annoncée pour 3F.

Lemme 9. Si Q est C-stable, en ce sens que Q — C Q, tout élément
extrémal de sé (£2, C) est de la forme cf, oü c e R+ et f une exponentielle de

la forme f (x) é^x) où 1 est une forme linéaire positive sur C.

Démonstration. Pout tout / définie dans Q et pout tout ae C, l'hypothèse

Q — CœQ entraîne que sa */ est partout définie dans Q; il en est
donc de même de (s0 — sa) * f

En outre, sif e sé (Q, C), il en est de même de sa * /et (s0 — sa) * fd'après
les relations:

n * ea*/) sa*(n*/);(n * (s0 -sa))*f ß* ((e0 - ej */).
Donc si/est extrémal dans le cône sé {Q, C), la relation/ (efl */) +

+ (£o -£„) */ montre que pour tout a(à) f, où k (a) est une
constante ^ 0.

Comme f é 0 on peut supposer, grâce au besoin à une translation, que
0 g Q et que / (0) =£ 0 ; et même, en multipliant / par une constante, que
/(0) 1 ; on en déduit k (a) f (-a), d'où l'identité/ (x-a) =f(x)f(-a)
pour tout v g Q et tout ae C.

Comme / est continue, un raisonnement élémentaire montre que / est
la restriction à Q d'une exponentielle el(x). Enfin, pour tout x e C, on doit
avoir/(-x) gj/(0), d'où / (x) ^ 0 sur C.

Théorème 10. Soit C un cône convexe de R", d'intérieur non vide ; soit
C° son polaire ; et soit Q un ouvert C-stable de RM.

1) Pour toute f e sé (f2, C) il existe une mesure unique n ^ 0 sur le
polaire C°, telle que :

(6) f(x) Jef'*d
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2) L'ensemble sé (Q, C) est identique à l'ensemble des fonctions f
indéfiniment dérivables dans Q dont toutes les dérivées partielles associées à des

vecteurs de C sont positives ; chacune de ces dérivées est convexe et analytique.

3) Pour toute mesure fi ^ 0 sur C°, si l'on note f l'application de R" dans

[0, oo] définie par la formule (6), l'ensemble X des x tels que f (x)<oo est,

ou bien vide, ou bien convexe et C-stable. Dans ce dernier cas, sur l'ouvert

convexe et C-stable Q X, la fonction f est convexe, analytique, et appartient

à sé (Q, C). En outre, pour tout ouvert C-stable Q' et toute E g sé {Q\ C),
tels que f et f coïncident sur un sous-ouvert de Q n Q\ on a Q' c Q, e/1 f' est

la restriction de f à Q'.

Démonstration. 1) Soit D une partie dénombrable et partout dense

de Q ; le lemme 8 montre que sur sé (Q, C) la topologie de la convergence
simple est identique à la topologie de la convergence simple sur D, donc
le cône faiblement complet sé (Q, C) est métrisable.

Or pour tout / e C°, la fonction el: x->el{x) appartient à sé (Q, C) et

l'injection l-+el de C° dans sé (Q, C) est une homéomorphie. Donc l'image
de C° dans sé (Q, C) est un ensemble borélien qui rencontre toute génératrice

extrémale de sé (Q, C). Compte tenu de lc et ce que pour tout x e Q,

l'application f->f(x) est une forme linéaire continue sur#" (iQ, R), il existe

donc une n ^ 0 sur C vérifiant la relation (6).
Son unicité est immédiate: Supposons, ce qu'on peut toujours faire, que

0 e Q ; alors n est bornée et son unicité résulte de ce que, si ut désigne une
base de Rn contenue dans C, les fonctions de la forme e~t(^niui\ où nx g N,
constituent d'après le théorème de Stone-Weierstrass, un ensemble total dans

(C°).
De cette unicité de n résulte, d'après lc, que toute et x où t g C,° est extrémale

dans sé (Q, C).

2) Soit A l'ensemble des fonctions indéfiniment dérivables sur Q telles

que, pour tout produit A de dérivations associées à des vecteurs de C, on
ait Af ^ 0.

Pour aeC et f e A, on a (,e0 — ea)*fGA, car A ((e0 — ea) * f)
(s0 — sa) * Af qui est positive puisque Af est croissante pour l'ordre

associé à C.

On a donc jll */^ 0 pour tout produit /.( d'opérateurs (e0 — d'où

/e sé (;Q, C).
Inversement toute f g sé {Q, C) admet, d'après 10. 1, une représentation

intégrale de la forme (6). Un raisonnement, classique dans l'étude de la
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transformation de Laplace, et basé sur la croissance de l'exponentielle,

montre alors que / est indéfiniment dérivable dans Q, et que toutes ses

dérivées partielles s'obtiennent par le calcul de dérivation formelle sous le

signe intégrale. Il en résulte que toutes les dérivées partielles associées à

des vecteurs de C sont positives.
Le même raisonnement classique montre que / est analytique dans Q;

sa convexité est évidente puisque toute etmX est convexe.

3) Pour tout te C°, la fonction x-*eUx est convexe et croissante (pour
le préordre sur R" défini par C) ; donc/ est aussi convexe (au sens large) et

croissante. L'ensemble X {x:/(x)<oo} est donc convexe et C-stable.

Si X ^ 0, la C-stabilité de X entraîne que le convexe X n'est pas vide,

et est aussi C-stable. Sur l'ouvert Q X, la fonction/ est finie et convexe,
donc continue. Le raisonnement du 10. 2 montre alors que / est analytique
dans Q.

Si Q' est C-stable, Q n Q' l'est aussi; il est donc connexe. Or/et/' étant
analytiques, l'ensemble des x de Q n Q! en lesquels / etf ont toutes leurs
dérivées égales est à la fois ouvert et fermé relativement à Q n Q' ; comme
il n'est pas vide, il est identique à Q n Q'. Ceci démontre la coïncidence

de/, /' sur Q n Q'; montrons enfin que Q' œQ:
Pour tout xeßu Q\ est défini, ou bien / (x), ou bien /' (x), ou

simultanément / (x) et /' (x), avec/(x) f (x); soit g(x) ce nombre unique.
La fonction g est définie sur l'ouvert C-stable Q u Q', et en tout point

ses dérivées partielles relatives à des vecteurs de C sont ^ 0, donc g e
stf (Q u Q\ C).

Soient respectivement /i, v les mesures sur C° qui fournissent les
représentations intégrales de f et g; comme /, g coïncident sur O, on a 11 v

d'après 10. 1.

Or J é x dv (t)<co sur Q u Q\ d'où la même relation pour ce

qui montre que Q'œX, d'où aussi Q'czQ.

Remarque 11. 1) Le corollaire 13 montrera que toute / e sé (Q, C) est
analytique, même lorsque Q n'est pas C-stable. On peut donc étendre la
fin de l'énoncé 10. 3 à ces fonctions sous la forme suivante:

« Pour tout ouvert connexe Q' et toute f' esé (Q\ C) tels que /etfcoïncident sur un sous-ouvert non vide de Ü n on a Q' aû, et/' est la
restriction de / à Q'. »

Pour le voir, on montre que si Qr 4= Ü, on peut agrandir un peu Q pour
obtenir un ouvert C-stable Q" c(Q u Q') et une fonction f" e sé {Q", C),
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qui coincide avec/ sur £2. Il suffit ensuite d'appliquer le même raisonnement
qu'en 10. 3 pour montrer qu'un tel £2" ne peut exister.

2) Il résulte du théorème 10 que pour tout ouvert C-stable £2, toute
A A A

C) se prolonge en une fonction fesé (£2,C), où £2 est l'enveloppe
convexe de £2.

Nous allons maintenant étudier sé (£2, C) pour un ouvert £2 quelconque.
Théorème 12. Désignons par P„ l'ouvert de Rn constitué par les

points à coordonnées >0. Alors, pour tout ouvert non vide £2 de la forme

P« n fl (xi~P/i))> tes éléments extrémaux de sé (Q, R") sont les monômes à
i

coefficients >0.
Et tout f e sé (£2, R") est somme d'une série entière à coefficients ^ 0.

Démonstration. 1) Pour toute suite a (oq, a2, a„) d'éléments de

]0, 1], et tout x (xi) e Q, on a aussi (oq xt) e £2. Pour tout f e s# (Q, R")
on désignera par fa la fonction sur Q définie par:

fJxL> =/(a1x1,
Les fonctions fa et ga (/—/a) appartiennent évidemment à j/(Q, RJ),

donc si / est extrémale dans le cône sé (Q, R+), la relation / fa + ga

montre que fa k (a)/; autrement dit, pour tout a e (]0, l])n et tout x e Q,

on a:
f(cc1xu ...,(xnxn) k(ocu (xn)f(xu ...,xn).

Comme / est continue (lemme 8), un raisonnement élémentaire montre
alors que / est un produit de la forme axpxl... xpnn. Cette fonction est
indéfiniment dérivable par rapport à xx et comme / e sé (Q, R+), toutes ses

dérivées par rapport à sont ^ 0; ceci ne peut avoir lieu que si pL est un
entier ^ 0; même raisonnement pour chaque ph donc / est un monôme,
avec évidemment a>0.

2) Comme en 10. 2 on vérifie que toute fonction dans Q dont les déri"
vées partielles sont positives appartient à sé (£2, R+); c'est en particulier le

cas de tout monôme xpf xPn. Soit M le sous-ensemble dénombrable de

sé (£2, R") constitué par ces monômes; comme en 10. 1, on peut montrer

que pour tout fe stf (£2, R+) il existe une mesure positive sur M dont la
résultante est /; autrement dit /est une somme de monômes à coefficients

^ 0; les propriétés élémentaires des séries entières entraînent l'unicité de

ces coefficients. Il en résulte que tout monôme est un élément extrémal de

jsé (£2, R:).
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Corollaire 13. Pour tout cône convexe C de R" d'intérieur non vide et

tout ouvert Q de R" :

1 Toute f e sé (Q, C) est analytique,

2) sé (ü, C) est identique à l'ensemble des fonctions f indéfiniment déri-

vables, dans Q, dont toutes les dérivées partielles associées à des vecteurs de C

sont positives.
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