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D’apres le rappel 1,, et compte tenu de ce que & (P,) < K, toute fe P,
est résultante d’'une mesure positive = de masse 1 sur K; donc si ’on remarque
que, pour tout x € G, I’application g—g (x) est linéaire et continue sur P
on a, en désignant par [x, ¢] la valeur d’un caractére ¢ au point x:

(4) f(x) = [[x,]dn(®).

Complétons maintenant ce résultat en montrant que la mesure 7 asso-
ciée a f est unique, ce qui entrainera d’aprés 1,, que & (P;) = K: il suffit
pour cela d’observer que sur K, I’ensemble des fonctions continues d : t—|[a, t]
est stable par multiplication et par passage au conjugué, contient la cons-
tante 1, et sépare les points de K, donc est total dans & (K) d’apres le théo-
réeme de Stone-Weierstrass.

Inversement, soit x4 une mesure positive quelconque sur K; u est limite
vague de mesures positives discrétes pu; sur K; et pour tout x e G, f(x) =
= [ [x, t]du (¢) est limite des f;(x) = | [x, #]du; (¢); comme f;e P, on a

A

donc aussi f e P. On peut donc énoncer, en remplagant la notation K par G,:
A
Théoréeme 2. Soit G un groupe abélien discret, et soit G, le groupe
A
compact de ses caractéres. L application u—f, qui a toute pe M ™ (G ) asso-
cie la fonction £, (x) = [ [x, t] du (t) est une bijection sur le céne P des fonc-
tions de type positif sur G.

LE THEOREME DE BOCHNER-WEIL DANS LE CAS GENERAL

A

Soit G un groupe abélien localement compact, et soit G le groupe de

A
ses caractéres continus; G est localement compact pour la topologie de la

convergence uniforme sur tout compact.
A

Pour toute mesure de Radon p = 0 bornée sur G, la fonction f, définie
par f, (x) = [ [x, t]du () est continue et de type positif.

Nous voulons montrer que la réciproque est vraie. La difficulté consiste
en ce que le cone des fonctions de type positif n’a pas de base compacte
pour les topologies usuelles; pour lever cette difficulté, plusieurs voies
s’offrent a nous:

A A A

a) Remarquons que G < G, et que I’application identique ¢ de G dans

A

G, est continue; donc pour toute mesure positive bornée u sur G, ¢ (u) est
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A

une mesure bornée sur G, et f, = f, (.- llest donc naturel de penser que
pour toute fonction f continue et de type positif sur G, la mesure u sur G,
A

qui la représente est en fait portée par G.

Cette voie est élégante, mais nécessite un outillage que nous voulons
éviter ici. Retenons-en seulement une conséquence intéressante: Comme les
applications u—¢ (1) et ¢ (W)—f,, sont injectives, lapplication u—f, I'est
aussi, d’ou l'unicité de la représentation cherchée.

b) Nous utiliserons dans ce travail le fait que la boule unité B de L*
(relatif & la mesure de Haar de G) est compacte pour la topologie faible
o (L®, L"), et nous remplacerons la recherche des fonctions continues de
type positif par celle des fonctions de type positif appartenant a L®.

Désormais nous dirons qu’un élément f de L™ est continu s’il admet
un représentant continu; et dans ce cas, pour tout x € G, f (x) désignera la
valeur de ce représentant au point Xx.

Définition 3. On dit qu’une fe L™ est de type positif si pour toute
velL! on a':

(@*a)(f)=[f(@xa)de=(x*a *f)(0)=0.

On désigne par P le sous-cone convexe fermé de L™ constitué par ces
fonctions, et on pose Q = PN B.

Lorsque f est continue, (feP) entraine (u * u) (f) = 0 pour toute
mesure u discréte; en effet une telle p est limite vague de mesures & densités
continues o, et & supports dans un compact fixe; donc les relations (o, * &)
(/) 2 0 entrainent (1 * i) (f) = 0.

Inversement, si f est continue et vérifie (u * w)(f) = 0 pour toute
mesure u discréte, | f | est bornée, donc cette inégalité s’étend a toute
mesure p bornée, et en particulier a tout produit de la mesure de Haar par
une o« e L.

Lemme 4. L’application f—||f||., est linéaire sur P.

Démonstration. Notons d’abord, ce qu’on montre comme dans le cas
de G discret, que pour toute « € L' et fe P, o * & * f est continue et dans P,
et Papplication f—(x * @ * /) (0) est linéaire.

En particulier, si « > 0 avec || o ||; = 1, on a:

1) Rappelons que & est définie par 9’: (x) = o (—x); que si &, BeLl, o+ 3 est continue et dans L1,
avec ||a , Bl|1=|]a||1 x ||Bl]1, avec égalité si o, 3 = 0.
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(5) o Max @ flly, = (@*xaxf)0) < ISl -

Or si (a;) est une famille de telles fonctions a, qui converge vaguement
vers g, suivant un filtre # (en ce sens que [ @o; dx—¢ (0) pour toute ¢
continue a support compact), «; * «; * f converge vers f dans o (L®, L")
(c’est évident si f continue a support compact, puis passer a la limite).

On a donc Iim || o; * @; * f||., = || f]|-; sinon, suivantun ultrafiltre %

F

plus fin que &# on aurait, d’aprés (5):

11m|| o * &,*f”oo < Hf” 009
U

ce qui est impossible puisque toute boule kB est faiblement fermée dans L”.
Donc I'application /= || f||.,, limite d’applications linéaires, est linéaire.

Lemme 5. 1) Toute fe L” telle quee, * £ = k (a) f pour tout a € G est,
a un facteur constant prés, un caractere continu de G. 2) Tout élément extré-
mal de P, tel que || ||, = 1 est un caractére continu de G.

Démonstration. 1) On suppose f # 0; il existe donc une o continue a
support compact telle que g = f*a # 0. La relation ¢, * f=k (a) f
entraine ¢, * g = k (@) g.

On a g (0) # 0, sinon puisque g est continue, g = 0; donc en prenant «
convenablement on peut supposer g (0) = 1, d’ou l'identité¢ g (x-+y) =
— g (x) g(»); autrement dit g est un caractére continu. En particulier
lg (x)] = 1 pour tout x, d’ou f/geL”, et |k (a)| = 1.

D’autre part, des relationse, * f=k (a)f et ¢, * g = k (a) g on tire
e,*(f/g)=f/g, donc f /g est un élément de L™ invariant par translation;
c’est donc une constante k, d’out f = kg.

2) Ilsuffit d’adapterla démonstration faite pour G discret: Si A = (g,+-ce,)

etsi f€ P,on montre que A * A * f€ P;on en déduit comme précédemment,
que si f est extrémale, on a ¢, * f = k (a) f pour tout a € G, d’ou le résultat
cherché d’apres 1.

Nous désignerons par K le sous-ensemble du convexe compact Q = PnB

A

constitué par les caractéres continus. La bijection canonique ¢ de G sur K

A
est continue; c’est donc une homéomorphie lorsque G est compact. Lorsque

A

G n’est pas compact nous admettrons (ce qui est élémentaire lorsque
G = R" en explicitant les caractéres) que ¢ se prolonge continuement au
A

point @w d’Alexandrov de G, avec ¢ (w) = 0; il en résulte en particulier
que ¢ est encore une homéomorphie, et que K U {0} est compact.
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Théoréme 6. 1) Q est un chapeau de P, et & (Q) = K u {0}. 2) Pour

toute f € P, f est continue et il existe sur G une mesure de Radon unique p = 0

telle que
f(x) = [[x, t]du(t) pour toutxeG.

Démonstration. 1) Lelemme 4 montreque P~ Q = {feP:||f]| > 1}
est convexe, donc Q, déja convexe et compact, est un chapeau de P; c’est
méme un chapeau universel en ce sens que P est réunion des nQ. Les élé-
ments extrémaux de O sont donc 0 et les éléments extrémaux de P de
norme 1; d’aprés le lemme 5, ce sont des caractéres continus de G.

Inversement, si f est un caractére continu de G c’est, d’aprés le théo-
reme 2, un élément extrémal du cone P, des fonctions de type positif sur G
discret; comme PcP, c’est a fortiori un élément extrémal de P, donc

fe&(Q).

2) Tout fe Q, donc aussi tout f'e P, est résultante d’une mesure posi-
tive u portée par le compact K U {0}, ou ce qui revient au méme, portée
par K puisque toute mesure portée par 0 a une résultante nulle.

Autrement dit, pour toute a € L! on a:

ffodx = J(J[x,t]o(x)dx)du(r).

Or soit g la fonction sur G définie par g (x) = [ [x, t]du (¢); elle est
continue et bornée, et la formule de Fubini montre que:

fgadx = [(J[x,t]a(x)dx)du(t),

d’ou | fu dx = [ go dx pour tout a e L', d’on f = g.
L’unicité de u a été démontrée ci-dessus en 3. a.

LE THEOREME DE BERNSTEIN ET SES GENERALISATIONS

Soit f une fonction réelle définie sur un intervalle ouvert I de R, de la
forme ]—o0, a[, ol a est fini ou +o0. Le théoréme de Bernstein affirme
que si f'a des dérivées de tous ordres et si f et ses dérivées sont positives, il
existe une mesure 7 = 0 (d’ailleurs unique) sur R* telle que I'on ait pour
tout x e [:

f(x) = [e¥dn().

Ce théoréme, ainsi que ses généralisations dans diverses directions se
démontre simplement en utilisant la notion d’élément extrémal. Nous appli-




	théorème de Bochner-Weil dans le cas général

