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DEUX EXEMPLES CLASSIQUES DE REPRESENTATION
INTEGRALE

Gustave CHOQUET

A la mémoire de J. Karamata

Nous présentons dans ce travail des démonstrations de deux beaux
théorémes classiques: celui de Bochner-Weil sur les fonctions de type positif,
et celui de Bernstein sur les fonctions totalement monotones.

Ces démonstrations sont basées sur une idée commune, celle de repré-
sentation intégrale des points d’un ensemble convexe au moyen de ses points
extrémaux.

Nous avons cherché, non pas a faire du neuf a tout prix, mais a unifier
et simplifier des démonstrations antérieures ') pour qu’elles deviennent indé-
pendantes d’outillages spécialisés, et soient ainsi plus accessibles. Nos
démonstrations peuvent d’ailleurs étre encore simplifiées si I’on se contente
d’un cadre moins général.

1. RAPPEL DE PROPRIETES DES ENSEMBLES CONVEXES ?)

a) Soit X un convexe compact d’un espace localement convexe séparé E,
et soit Y une partie fermée de X contenant P'ensemble & (X) des points
extrémaux de X.

Il résulte du théoréme de Krein-Milman que pour tout point x de X,
il existe au moins une mesure de Radon u positive de masse 1 portée par Y
et de résultante x, c’est-a-dire que /(x) = u (/) pour tout /e E’. Si pour
tout x € X cette mesure est unique, ¥ = & (X) et X est un simplexe, c’est-
a-dire peut étre considéré comme la base du cdne positif d’un espace vec-
toriel réticulé.

b) Soit maintenant C un cbne convexe d’un espace vectoriel topo-
logique; on appelle chapeau de C tout convexe compact X< C tel que

1).Pou; la démonstration du théoréme de Bochner-Weil, 'idée centrale n’est qu’une simplification
d’une idée introduite par Bucy et Maltese [1].
2) Voir Choquet-Meyer [3].
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(C = X) soit convexe. Tout élément extrémal x#0 de X appartient 2 une
génératrice extrémale de C.

¢) Si C est un cone convexe saillant, métrisable et faiblement complet,
tout point x de C appartient a un chapeau de C, et pour tout borélien B
de C qui rencontre toute génératrice extrémale de C hors de 0, x est résul-
tante d’une mesure positive portée par B. D’autre part si, pour tout x cette
mesure est unique, C est réticulé, et 'application qui & tout x € B associe
la génératrice qui le porte est une bijection de B sur I’ensemble des généra-
trices extrémales de C.

LE THEOREME DE BOCHNER-WEIL POUR UN GROUPE DISCRET

Pour mieux éclairer le mécanisme de la démonstration générale, nous
la ferons d’abord pour les groupes discrets.

Soit donc G un groupe abélien quelconque, et soit f une fonction a
valeurs complexes sui G.

On dit que fest de type positif (ou définie positive) si pour toute famille
finie (x;);.; de points de G, et toute famille («;);.; de nombres complexes,
Y o; &; f (x;—x;) est un nombre réel positif.

i,J

Il est commode d’exprimer tout de suite cette propriété en termes de
convolution, en utilisant les mesures discrétes g = X o; &, et p =2 &;&_ ..
La condition précédente devient alors:

(1) Zai&j,f(xi—xj) = (u=*=m@(f) 20, ouencore (u* u*f)(0) =0.

En particulier, si on prend p = ¢, + cg,, cette condition devient:

(2) (L+1el®) f(0) + ¢f(a) + &f(—a) 2 0.

Si on donne successivement a ¢ les valeurs 0, 1,7, — | f (a)[ / f (a) (quand
f(@)#0), un calcul élémentaire fournit les relations importantes:

(3) fO)z20; f(=x) =f(x) et [f)]=f(0).

Exemple. Appelons caractére de G toute f a valeurs complexes sur G,
bornée, non identiquement nulle, et vérifiant I'identité / (x+y) = f (x) £ ().

Il est immédiat que f(0) = 1, que If(x)[ =1, et que f(—x) =f(x)
pour tout x € G. Il en résulte que:
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